
The FOSSology Project: 10 Years Of License Scanning 9

The FOSSology Project:
10 Years Of License Scanning

Michael C. Jaeger,a Oliver Fendt,a Robert Gobeille,b Maximilian Huber,c

Johannes Najjar,c Kate Stewart,d Steffen Weber,c and Andreas Würl c

(a) Siemens AG, Corporate Technology (b) Freelance Consultant
(c) TNG technology Consulting GmbH (d) The Linux Foundation

DOI: 10.5033/ifosslr.v9i1.123

Abstract
FOSSology is an open source project developing a Web server
application and a toolkit for open source license compliance. As a
toolkit it allows performing license copyright and export control scans
from the command line. The FOSSology Web application provides a
database and Web UI for implementing a compliance workfow.
The FOSSology project published the frst version of its software in
December 2007. Given this ten year anniversary of license scanning this
article presents the motivation for building and using FOSSology its
history and its status as of today. Because SPDX represents the de facto
standard for exchanging license and copyright information about
software packages an introduction to FOSSology’s support for exporting
and importing SPDX documents is also presented.

Keywords
Free and Open Source Software, License Scanning, Compliance Tools,
SPDX, OSS Analysis

Introduction

The use of software is granted under a specifc license. Open source software, like proprietary
software, has conditions that must be complied with. In absence of a license, the software must be
treated as all rights reserved, and not distributed further. As a result, understanding the license is key
to being able to determine what one is allowed to do with the software.

Open source software is licensed using open source compliant licenses. The Open Source Initiative
provides a defnition of open source1 and an open source compliant license has to comply with all
parts of this defnition. However, the list maintained by OSI is only a small set of the licenses
currently in use of open source projects.

Over the past few decades a lot of diferent Open Source compliant licenses were drafted by diferent
authors. Today we are confronted with the so called “OSS license proliferation” problem. More than
1000 Open Source compliant licenses are “in use”, some of them difer only in a few words, while

1 Open Source Initiative: The Open Source Defnition https://opensource.org/osd - 2017

International Free and Open Source Software Law Review Vol. 9, Issue 1

10 The FOSSology Project: 10 Years Of License Scanning

others pursue a totally diverse interests. The SPDX working group collects main open source licenses
and as of today, this efort has identifed more than 340.2 While a few licenses are very popular,
meaning that many open source projects apply them to their work, as can be seen by usage statistics,3

some other licenses are just published and applied by individual organizations to their software.
Examples of popular licenses are the GNU General Public License 2.0 or the MIT License; examples
of organization specifc licenses are the Apple Public Source License 2.0 or the Microsoft Public
License. Very briefy, authors and organizations have created all these diferent licenses for multiple
reasons, among which:

• Authors of open source software have particular intentions for the use of their open source
software;

• Commercial organizations strive to protect their commercial interests; or

• Non-proft organizations strive to protect or promote the use and adoption of open source
software.

• Given the three points above, individuals or organizations have authored updated versions of
their licenses, adding to the number of existing texts with even more new texts.

This article does not intend to compare or discuss all the diferent licenses. Rather it points to
another challenge that results from the high number of existing license texts: Assuming the
redistribution of an open source software component, regardless if it is as part of a commercial
product or as part of a new open source project, this step requires the determination of the exact text
of the applicable license for multiple reasons:

• Some licenses request providing the license text along with the redistribution of the
software component.

• Some licenses express particular conditions when exercising the granted right of
redistribution.

• Some conditions of some licenses are not compatible with conditions of other licenses. In
this case combining two components licensed with incompatible licensing conditions
between them is not possible.

As a result of the explanations given above, the frst step of redistributing open source software is to
determine the exact license text. However, realistically though, because each open source project
tends to borrow from others, a mix of licenses tends to be present in most open source software
components. When there are tens of thousands of fles that make up a modern software package, it
becomes a signifcant amount of work to properly respect the licenses. Therefore, the challenge is not
only the great number of existing license texts, but also to cover the fact that many open source
components show multiple open source licenses applying for some parts of the component.

In addition, a third challenge arises: authors of open source software do not use, in many cases at
least, a standardized form of licensing. While licenses, such as the GPL versions, have standardized
headers for source fles to express a common way of licensing, many authors have found individual
ways of referring to a license, sometimes using prosaic language. Thus, license statements which
refer to a common license text can be either not unambiguously pointing to a particular license or are
just hard to identify as a licensing statement.

2 SPDX Workgroup - a Linux Foundation Collaborative Project: SPDX License List https://spdx.org/licenses/ - 2016
3 Github.com: Open source license usage on GitHub.com https://blog.github.com/2015-03-09-open-source-license-usage-

on-github-com/ - 2015

International Free and Open Source Software Law Review Vol. 9, Issue 1

https://blog.github.com/2015-03-09-open-source-license-usage-on-github-com/
https://blog.github.com/2015-03-09-open-source-license-usage-on-github-com/

The FOSSology Project: 10 Years Of License Scanning 11

In summary, we have three diferent challenges for fnding exactly the applicable license texts for use
when redistributing open source software:

• A high number of licenses exist (OSS license proliferation);

• Multiple licenses can be found in a single open source component;

• Authors sometimes do not unambiguously refer to a particular license including its text.

Software tools exist to cover these challenges: license scanning software searches in open source
software code for known license texts, licensing expressions and license relevant statements. One of
these tools is provided by the FOSSology project. The FOSSology software is designed to determine
the licensing condition of open source components. FOSSology was frst published in 2007 by a
group of Hewlett-Packard (HP) engineers, which is about 10 years ago. Therefore, it is now a good
time for updating what has happened with FOSSology and its status as of today.

This article is organized as follows: the next section introduces the FOSSology project and gives a
brief overview of its history. A subsequent section explains some of the technology used in
FOSSology. Another section provides an overview of FOSSology and SPDX and the last section
concludes this article.

Project History

FOSSology was frst published by engineers from HP. An early frst version of the software existed
inside the company. Before FOSSology came in to being, an HP software engineer, Glen Foster,
wrote some tools to perform license scanning. The focus was on scanning Linux distributions
released with HP products. At that time Linux distributions were already large portions of open
source software. Thus, a scan tool with the capability to scan large archives was the focus from the
beginning. A frst version of the software consisted of individual shell scripts. Subsequently, those
scripts evolved into C language and compiled executables for speed. Then, the C code was enhanced
to make it more capable for extension with future license texts and more licensing statements. This
resulted in the original Nomos license scanner. FOSSology combined Nomos with a license
categorization concept named buckets: users could defne buckets based on detected licenses. With
this approach, software was scanned with individual fle focus. At the same time the software
provided a large number of static HTML fles for reporting.

In a subsequent efort, Robert Gobeille became involved by leading a project to speed this process
up. The basic approach was the reuse of scans: Files that had been scanned already would not show a
diferent licensing when scanned again. By including a database, the software avoided rescanning a
large percentage of the fles in a distribution. Another point was the reporting, which was at frst, the
standard output of the executables. By creating a plugin Web interface served by a Web server,
dynamic and confgurable reporting could be easily added.

After this setup had been established, the project came to realize that the value of the FOSSology
project was in free use for all organizations, while plans to productize it seemed unlikely. Rather, the
idea emerged that its development could be leveraged by making it an open source project. Thus
FOSSology was born. One of the visions for FOSSology was to make it an open source data mining
system, not being limited to scanning for license texts and statements, hence the name FOSS + ology
- the study of Free and Open Source Software. Therefore FOSSology implemented an architecture
of pluggable agents that can be composed into a pipeline of tasks applied to an uploaded open source
component. After FOSSology was made open source, it was not only limited to providing the
community with a license scanner (at that time called “license detector”). In 2008, the FOSSology

International Free and Open Source Software Law Review Vol. 9, Issue 1

12 The FOSSology Project: 10 Years Of License Scanning

project identifed the potential in providing the analysis data for a public repository of software and
license metadata at FOSSology.org.4

FOSSology 2

In 2012, the project released version 2 of FOSSology. A new installation package structure
reorganised the software project. Furthermore, an architectural change was made with the
implementation of a new scheduler which orchestrates the diferent scanning agents. This change also
helped to design and run the agents more independently. While such changes did not bring new
features to the users, the new architecture provided a more extensible structure for the FOSSology
project. This followed the overall vision that FOSSology represents an analysis and reporting
framework where agents as modules can be combined into a workfow running on OSS components.

Another improvement introduced in later versions of the FOSSology 2 era was the introduction of
data access objects (DAO). On the frst hand, the DAOs helped making database access more
systematic. But with the diferent report formats, the DAOs also ensured consistency between the
diferent outputs: rather than each reporting agent implementing its own query logic, all agents could
call the same functions to query the database, for example, for found licenses in the uploaded OSS
component.

With version 2, FOSSology evolved into a multi user Web application that covered two main trends
of licensing open source software: Not only did open source software become more and more
popular and awareness about license compliance increased, but also the licensing showed more forms
of individual statements. Further additions in the FOSSology 2 era were about organizing uploads
with tags and the ability to correct fndings brought up by the scanners. FOSSology turned from a
server based scan tool to a Web application for users to upload, analyse and organize OSS
components for their licensing conditions.

A major change that users actually noticed was the reworked fle contents view for reviewing license
fndings including the highlighting of text areas of license relevant statements or licensing headers in
fles. What sounds straight forward turned out to be a complicated programming problem: license
headers or license relevant statements are usually put into comment sections of source code. At the
same matching license expressions using, for example, regular expressions required cleaning the text
from comment sections. Otherwise matching text areas would have been compromised by these.
However, for highlighting the matched text area in the Web UI, the fle contents are displayed
including comment sections. Highlighted text areas would shift because of comment sections
previously omitted for the matching. As such, recalculation of the exact text position was necessary.
As an additional challenge, source code fles can contain multiple licensing statements or headers
scattered across multiple locations in a fle which require a comprehensive approach to recalculation.
In the end this was worth the efort, as it turned out that highlighting license relevant text areas
greatly helps to quickly identify and classify license relevant parts of the fle on screen.

Also n this period, a frst version of SPDX generation was published as an external module by the
University of Omaha Nebraska.5 SPDX is a specifcation for expressing metadata about software
packages including licensing information.6 Leveraging the modular structure of FOSSology, the
SPDX output was implemented as just another reporting agent. A frst version of the software
generated SPDX 1.1 compliant documents while a subsequent evolution of the generation plugin
provided SPDX 2.0 conforming documents as output format.

4 Robert Gobeille: The FOSSology project - MSR '08 Proceedings of the 2008 international working conference on Mining
software repositories

5 Matt Germonprez, Gary O'Neall, Sameer Ahmed: Tooling up for SPDX - Open Compliance Summit 2013
6 SPDX Workgroup - a Linux Foundation Collaborative Project: SPDX License List -

https://spdx.org/sites/cpstandard/fles/pages/fles/spdxversion2.1.pdf - 2016

International Free and Open Source Software Law Review Vol. 9, Issue 1

https://spdx.org/sites/cpstandard/files/pages/files/spdxversion2.1.pdf

The FOSSology Project: 10 Years Of License Scanning 13

In the version 2 era, the project was also transferred to the Linux Foundation as a collaborative
project. A discussion about this step was coincidently taking place at the time of the splitting of the
HP company into two organizations.7 Eventually the Linux Foundation ofered to host the
FOSSology project where it fts into the Open Compliance Program.8

FOSSology 3

FOSSology 3 introduced a new license scanner Monk as a new feature. This scanner fnds license
texts faster than the Nomos agent. Both the matching and the diference between stored license text
and found text is highlighted which helps the user to quickly identify the license. Additionally, the
keywords used by Nomos are highlighted in the same text view. These visual hints help in the license
decision process where the results can be managed in FOSSology: Diferences to reference license
texts from the FOSSology database are clearly shown to the user. Another feature introduced with
version 3 was the editing capability of copyright phrases found by FOSSology. This is important
since there is no rule as to how to indicate copyright ownership and there is a variety of diferent
ways that copyright ownership may be expressed. Although the implemented functionality to extract
copyright notices is striving to extract only the relevant information, it is sometimes necessary to
postprocess the results, mainly to remove formatting characters.

New JavaScript frameworks like jQuery and jQuery Datatables modernized the client look and feel
while refactoring on the server side, such as dependency injection increased testability. FOSSology
continued with technical improvements with more use of jQueryUi for a better client experience and
the implementation of PHP templating using the Twig library.

Another open source project for license scanning, Ninka9 has been integrated using a wrapper. The
main idea was to have three license scan approaches in FOSSology to allow for more adaptive
scanning as well as the ability to conclude licensing based on the results of these. With these license
scanners integrated, another agent was added for more automation in the workfow: a decider agent
allows for defning rules such as reusing decisions from other packages or automatic decisions if all
scanners determine the same license. For decisions based on certain text phrases, another scan agent
speeds up the process: users can select distinct licensing statements found in a particular fle and
apply a rule for the entire upload to alter, confrm or remove a particular license.

Another feature was a refactored SPDX 2.0 RDF fle generation. Release 3.1 extended the output
formats for the SPDX tag-value notation in addtion to RDF/xml. Release 3.2 added the ability to
import SPDX documents from other FOSSology instances or even other software tools.
Furthermore, a word processor document report was added in Fossology 3.2, which contains not only
licensing information, but also summarises analysis decisions as well as scan fndings. And fnally, an
added JSON output format increases the possibilities to export results for other applications.

Another feature area implemented in version 3.2 of FOSSology is license obligation and risk
management. This feature allows for defning obligations and risks and associating them to licenses.
When a report is generated, all the obligations and risks of the licenses in efect (the concluded
licenses) are generated in the report, given that an administrator of FOSSology has assigned the
obligations and risks to the licenses. This especially helps to efciently deliver a component license
analysis without subsequent manual editing steps.

7 Hewlett-Packard Co.: HP To Separate Into Two New Industry-Leading Public Companies, Press Release, October 6th
2014

8 The Linux Foundation: Open Complicance Program – A Linux Foundation Initiative
https://compliance.linuxfoundation.org

9 German, Daniel M.; Di Penta, Massimiliano and Davies, Julius : Understanding and auditing the licensing of open source
software distributions. In Program Comprehension (ICPC), 2010 IEEE 18th International Conference on, pp. 84-93.
IEEE, 2010.

International Free and Open Source Software Law Review Vol. 9, Issue 1

https://compliance.linuxfoundation.org/

14 The FOSSology Project: 10 Years Of License Scanning

Last but not least, FOSSology 3 added features that reduce the time needed for component analysis
and scanner corrections by reusing information from previously analysed uploads. For example, when
scanning new versions of software, the analysis can be limited to the diferences compared to an
older version. In fact, this reuse is not only limited to conclusions or corrections of licenses on a fle
basis: also identifed custom text passages in previous uploads can be taken over to new uploads.
With this feature the manual correction time of a newer version of a software component is
minimized to the actual diferences in licensing only.

Technology

FOSSology is a derivative of a LAMP application. LAMP is an acronym that denotes applications
that run in Linux, use the Apache Web server, build on MySQL as a database and provide a PHP-
based Web UI. In FOSSology, a PostgreSQL database server is used instead of MySQL. Because of
its dependencies on the Linux APIs and libraries, FOSSology cannot be easily ported to the
Windows or Mac OS X platforms. However, virtual machines or docker-based builds make its use on
these platforms possible today.

Database Approach

Since scanning for licenses in open source components yields large amounts of data, the use of a
database is a required. PostgreSQL is available on most Linux distributions and represents a mature
dependency, while allowing for portability of the FOSSology software.

In the frst days of FOSSology, the reference schema was stored in the so called GoldDb. Schema
changes were managed via a centralized implementation in lib/php/libschema.php. However,
some operations cannot be represented as schema updates for an existing database. Therefore,
additional steps for migration of data are required during upgrade to a new release. This support is
very important as FOSSology users create a growing database of scanned source code fles which
should be maintained with new versions of the software. The script install/fossinit.php executes
the correct install/db/dbmigrate* fles depending on the release that is stored in the database and
ends up in a well defned state.

While some queries would work well with other database management systems, some specialized
queries rely on PostgreSQL, e.g. recursively computing full path names. The performance gain of
executing the logic in the database instead of PHP justifes the dependence upon the database
technology. An OR-mapper is not (yet) used, due to the large number of complex, highly optimized
queries.

PHP Stack

FOSSology prior to version 2.6 did not use any PHP frameworks. The frst use is found in release 2.6
which is, strictly stated, not a minor release, because it changed how PHP dependencies were
integrated by using the composer package manager. Composer allows for managing libraries and
their (transitive) dependencies. The dependency manager for PHP manages updates from the
previous releases of dependencies, and also if the system cannot connect to the Internet. This
technology change was required due to the end of life of the formerly used PEAR channel.

The transition to a modern and standardized PHP application is an ongoing process with many
diferent aspects. The frst aspect is improving testability of new components. Since PHP is used as
Web frontend, the structure is continuously improved to ensure a MVC like paradigm. HTML
rendering is migrated from PHP print statements to twig templates. The previously mentioned DAO
objects have helped to improve security by using an abstraction for database confguration. Then, a

International Free and Open Source Software Law Review Vol. 9, Issue 1

The FOSSology Project: 10 Years Of License Scanning 15

re-factoring aimed at separating logic from presentation and persistence layer code was started. In
this presentation and persistence layer, code was replaced with open source components where
possible. Most of the required refactoring has been applied from version 2.6 through version 3.1.

License Scanning

Nomos is the main license scanner in FOSSology and it is based on regular expressions. As indicated
above, the text formatting and programming language specifc comment characters, such as '//' (or
“/*”, “;;”, “REM”, “%” and similar variations) present a challenge for regular expressions. To
circumvent this problem, Nomos uses short seed expressions to identify regions of interest. It
normalizes a portion of the scanned fle in the vicinity and then scans for larger snippets. After the
list of matching snippets is established, Nomos determines their positions in the scanned fle and the
snippets are mapped to license fndings.

License fndings are either positive matches to known licenses with their version, or unknown
licenses in the style of a known license. This design guarantees a low false negative rate, as license
relevant portions of a fle are identifed even if the license text is not yet known in FOSSology.
Currently, Nomos holds more than 3000 snippets that map to more than 650 licenses.

Apart from the regular agent mode, Nomos can be run in the one-shot analysis mode. Here a single
fle can be uploaded and is scanned on the fy. If FOSSology is installed, Nomos can also be called
from the command line and the output can be directed to standard out for plain text processing of
scan results.

One structural disadvantage of matching license relevant text fndings with regular expressions is the
lack of an ability to detect manipulated license text. While this topic is may be interesting from a
legal perspective, custom variants of popular license texts are a problem for tool-based license
scanning. One example of this problem is the use of the MIT license and the addition of one or more
sentences with extra conditions. A regular expression based approach would consequently identify
the MIT license, which is a classic example of a permissive license and would possibly not fnd any
“not-so-permissive” custom additions.

For handling this case the agent named Monk was introduced into FOSSology. This agent considers
the reference license text collection from the FOSSology database. Originally these texts were added
to FOSSology to allow the user to review the original license texts in the UI. The Monk agent uses
these texts to compare with the found text in the fles of the uploaded software component.
Technically, Monk tokenizes the license reference texts and the text found in a fle by space or line
break characters. Also common comment characters are fltered. Then, Monk computes the Jaccard
text similarity index and adds a weighting to the computed index. The weighting assigns longer text
matches with less similarity greater weight than shorter matches with 100% similarity. This is
necessary because some longer license text includes shorter license text. If the weighting was not
added, the shorter 100% match would always be preferred over longer, but not exact matches.

The obvious disadvantage of Monk is that it recognizes only those licenses which are part of the
FOSSology license database. In this way, both the Nomos and Monk agents complement each other:
Nomos also detects unknown licensing statements or license texts, however, with less precision. At
the same time Monk can give very precise detection results for all known licenses.

FOSSology and SPDX

As mentioned earlier, SPDX represents the de-facto standard for expressing metadata about software
packages. SPDX stands for "Software Data Package Exchange" and describes an initiative by the

International Free and Open Source Software Law Review Vol. 9, Issue 1

16 The FOSSology Project: 10 Years Of License Scanning

Linux Foundation to set standards for communicating the components and their licensing.10 As part
of the SPDX efort, the specifcation also defnes a comprehensive list of licenses with standard
identifers and specifcations for report formats (cf. SPDX License List). Since FOSSology’s main
functionality is license scanning, supporting SPDX as a report format represents a natural step. Also
the license identifcation uses the SPDX standard identifers where present.

Since release 3.0, as mentioned above, FOSSology has had the ability to export SPDX 2.0 reports.
Since the generated output was already SPDX 2.1 compatible, it is now also labelled to be, the more
up to date, version 2.1.

The two output formats from the SPDX defnition are supported. The RDF/xml (a Resource
Description Format developed by the W3C) and tag-value. The tag-value format is a more human
readable output and is similar to the debian-copyright format as used for Debian packages.11 These
reports represent the result of the scanning and analysis in both machine and (in the case of tag-
value) human readable format. Scan results are expressed using the “LicenseInfoInFile” tag, while
the analysis result is written using the “LicenseConcluded” tag.

Because the implementation of SPDX report generation uses a template library, FOSSology can also
generate the well known debian-copyright fles. The major diference between the SPDX tag-value
format and debian-copyright is that debian-copyright aggregates fles by found (or concluded)
licenses while SPDX maintains a listing for each individual fle. As such, SPDX documents could be
converted to debian-copyright fles but not vice versa.

Importing SPDX Documents

In 2017, many tools in the area of license compliance were able to write SPDX documents. Since
SPDX format is machine readable it is an obvious idea, to implement importing functionality as well.
However, to our knowledge, no license scanning tools (The Open Source project Eclipse SW360 can
import an SPDX document to generate license documentation for products) were available in 2017
to read or import SPDX formats. This functionality serves two main use cases:

• If a party receives an SPDX document, how would the receiving party review this
document? What would be required is a view where the fle or directory structure is shown
along with the imported SPDX (licensing) metadata similar to reviewing license scan results
provided by the agents.

• If a user requires analyses of a software component, maybe the analysis results of an older
version of this component would be available for reuse. Existing analysis results could be
available to the public to continue working with for future versions of a software
component. Importing existing analysis results helps by reducing efort when analysing new
versions of a software component.

Since 2017 FOSSology has been able to import SPDX documents notated in RDF/xml to cover
these two use cases. In the same manner as with agent scan results, users can use FOSSology as a
tool to verify the information present in an SPDX document when applying it to an uploaded
software component. After importing, the necessary workfow is simply the verifcation of a scan
result.

Since the analysis work of a licensing situation can be very time consuming, reuse of existing
analyses represents an important capability to reduce efort and avoid duplicate work. FOSSology

10 SPDX Workgroup - a Linux Foundation Collaborative Project: SPDX License List -
https://spdx.or g/sites/cpstandard/fles/pages/fles/spdxversion2.1.pdf - 2016

11 Debian Project: Machine-readable debian/copyright fle https://www.debian.org/doc/packaging-manuals/copyright-
format/1.0/ - 2017

International Free and Open Source Software Law Review Vol. 9, Issue 1

https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
https://spdx.org/sites/cpstandard/files/pages/files/spdxversion2.1.pdf
https://spdx.org/sites/cpstandard/files/pages/files/spdxversion2.1.pdf

The FOSSology Project: 10 Years Of License Scanning 17

servers can exchange analysis data between each other and FOSSology can exchange analysis
information with other license scanning tools, allowing for general reuse between tools.

Conclusion

FOSSology helps to bring clarity to open source licensing, and also supports the adoption of open
source software while respecting the intentions of the authors expressed through their licensing.
FOSSology itself is licensed under the GPL-2.0 and hosted by the Linux Foundation. Therefore, it
matches the slogan “Open Source Compliance with Open Source Tools”.

OSS license compliance tooling shall be available to all, including universities, individuals, OSS
projects and companies. It should not be the privilege of larger organisations or companies, which
can aford to purchase licenses for commercial tools. Since the source code of FOSSology is
available, it can be analysed and - if desired - be improved. FOSSology provides full transparency,
which improves confdence within the context of license compliance work.

FOSSology has now existed for more a decade. During this time, FOSSology has undergone major
renovations in its architecture to keep pace with common technical evolution. It has been improved
in the relevant areas of OSS license analysis, such as more precise review functionality, more
scanning and detection functionality, automation of conclusions, data exchange using the de-facto
standard SPDX and a more modern UI.

FOSSology implements precision, enables workfow and allows its users to review, approve, and
correct the results the agents have produced. All these capabilities are required for achieving OSS
license compliance.

Although licensing found in OSS components is still heterogeneous and sometimes is expressed in
very special ways, its standardization is underway, for example, the Reuse project as proposed by the
Free Software Foundation Europe.12 FOSSology will follow this trend by further automating the
license recognition of these standards so that the efort required for manual review is reduced while
keeping the high precision and certainty of its license recognition.

Acknowledgement

The authors would like to especially thank Paul Guttmann for his support.

About the authors

Oliver Fendt has more than 16 years experience in open source software, its license conditions and
how to comply to the different licenses. During this time he kicked off several initiatives, among these
initiatives are the open source project SW360 and the sponsoring of considerable contributions to the
open source project FOSSology. He has developed different trainings about open source software and
how to achieve license compliance and has given OSS compliance trainings since 2008.

Robert Gobeille is the creator of FOSSology and the original project leader. He works currently in
projects with nexB.

12 Free Software Foundation Europe e.V. (FSFE): REUSE Initiative https://reuse.software - 2017

International Free and Open Source Software Law Review Vol. 9, Issue 1

https://reuse.software/

18 The FOSSology Project: 10 Years Of License Scanning

Maximilian Huber is a consultant at TNG Technology Consulting Max spends most of the time to
develop and support the Linux Foundation project FOSSology and the Eclipse incubator SW360.

Michael C. Jaeger is one of the maintainers for the FOSSology project and SW360 (available on
Github), both in the area of OSS handling w.r.t. license compliance and component management. At
Siemens Corporate Technology in Munich, Germany, Michael works in several roles as project lead,
software architect, trainer and consultant for distributed systems, server applications and their
development with open source software.

Johannes Najjar is a Senior Consultant at TNG Technology Consulting GmbH. He has a background
in high energy physics and currently focusses on IOT and Cloud Computing.

Kate Stewart is a Senior Director of Strategic Programs at the Linux Foundation responsible for a
portfolio of open source projects and standards. With almost 30 years of experience in the software
industry, she has held a variety of roles and worked as a developer in Canada, Australia and the US.
For the last 20 years she has managed software development teams in the US, Canada, UK, India and
China, and focused on delivery of open source based products from Freescale, Canonical & Linaro.

Stefen Weber is a software developer with background in algebra and numerics. High ranking in
algorithmic competitions favors the focus switch to IT after the PhD in mathematics. Since 2013 he
worked as full time developer for projects in certain languages with different frameworks.

Andreas Würl has worked for more than seven years as an IT consultant at TNG. His main focus is
participating in and improving the agile software development process mainly with sustainable design
and architecture. He practises a variety of programming and confguration languages and enjoys
contributing to open source software in his free time.

International Free and Open Source Software Law Review Vol. 9, Issue 1

Licence and Attribution

This paper was published in the International Free and Open Source Software Law
Review, Volume 9, Issue 1 (December 2017). It originally appeared online at

http://www.ifosslr.org.

This article should be cited as follows:

Jaeger, Michael C.; Fendt, Oliver;, Gobeille, Robert; Huber, Maximilian;
Najjar, Johannes; Stewart, Kate; Weber, Stefen and Würl, Andreas (2017) 'The

FOSSology Project: 10 Years Of License Scanning', International Free and Open Source
Software Law Review, 9(1), pp 9 – 18

DOI: 10.5033/ifosslr.v9i1.123

Copyright © 2017 Michael C. Jaeger, Oliver Fendt, Robert Gobeille, Maximilian
Huber, Johannes Najjar, Kate Stewart, Stefen Weber and Andreas Würl.

This article is licensed under a Creative Commons Attribution 4.0 CC-BY available at

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

	Project History
	FOSSology 2
	FOSSology 3

	Technology
	Conclusion

