
Open Source Compliance and Goldilocks: Too Little, Too Much, Just Right 41

Open Source Compliance and Goldilocks: Too
Little, Too Much, Just Right

Robert Marion (a)

(a) Sr. Open Source Compliance Analyst at Citrix

DOI: 10.5033/ jolts .v10i1.1 38

Abstract
Although open source compliance can be tricky and require resources it
is not inherently necessary to employ dedicated personnel and
enterprise solutions to accomplish a reasonable degree of best practices.
This is particularly in situations where any resource allocation will
compete for the resources required to actually create a product.†

Keywords
Law; information technology; Free and Open Source Software;
licensing; compliance

Software developers depend on open source code. They pull it from GitHub, SourceForge, the
Python Package Index (PyPI) and many other sources. There are Open Source advocates, who
believe all software should be open source and there are professional organizations like OpenChain 1,
the Open Source Initiative2 and the Free Software Foundation3 which assist in defining open source
compliance programs. There are also foundations that produce, host and represent the Open Source
community such as the Apache Software Foundation.

In contrast, businesses often substantially depend on their proprietary code to build products and
generate revenue. They have a need to demonstrate that they know what is in their code because a
software product is an assembly of many different components and these components may be open
source projects (or commercial) and will be comprised of multiple authors, copyrights, and licenses.
The many parts of a software product are often obscured by the ease with which one can incorporate
code that does not originate with the product’s developers. Entire software architectures can be built
around a third-party framework before consideration is given to whether its license is compatible
with proprietary code. One example is that in the case of the General Public License (GPL), other
open source licenses may be non-compatible with the GPL’s terms. A license establishes both rights
and responsibilities and a failure to understand the responsibilities of a license can lead to litigation,
monetary losses, missed deadlines and the need to halt shipment of a product. A growing awareness
of licensing obligations with the use of third-party open source means that many companies now
have introduced mechanisms for compliance. However, with a startup company, the compliance

† The views and opinions expressed in this article are those of the author and do not necessarily reflect the policies, opinions
or position of Citrix Systems.

1 https://www.openchainproject.org
2 https://opensource.org/
3 https://www.fsf.org/

Journal of Open Law, Technology, & Society Vol. 11, Issue 1

https://www.doi.org/10.5033/jolts.v11i1.138
https://www.fsf.org/
https://opensource.org/
https://www.openchainproject.org/
https://www.doi.org/10.5033/jolts.v11i1.138
https://www.doi.org/10.5033/jolts.v11i1.138
https://www.doi.org/10.5033/jolts.v11i1.138

42 Open Source Compliance and Goldilocks: Too Little, Too Much, Just Right

program may not exist at all or it may be as light as asking the developers to be wary of using code
that is “adversely” licensed. Even with larger companies there may only be a single person
responsible, often a lawyer, or a department of persons using enterprise software tools to prevent the
inclusion or detect existing code that has licenses that are not considered proprietary friendly.

This article will consider the notion of there being a waterline for a right amount of compliance. A
tech startup will not, nor should they have a multi-person compliance department any more than it
would make sense for a company with hundreds or thousands of developers to have a single person
who may have other duties running a compliance program. In all cases, there is a need to balance
licensing compliance with the amount of resources available to a business.

No Free Beer for You

How Free Open Source Software (FOSS) is defined can be somewhat contentious with various
organizations evangelizing their perspective of what is reasonable and correct. Some entities and
groups share a belief that software should be freely shared for the benefit of all humankind, or at
least, all programmer-kind. It is an altruistic philosophy, a democratic ideal that software products
should be thought of as ideas that do not belong to a single class of people. The Free Software
Foundation defines free open source software as having the freedoms to use, run, modify and
redistribute a program. We “should think of free as in free speech, not as in free beer”.4 This belief
is often at odds with the imperatives of the business world, which seeks to monetize everything
possible to provide returns to their stakeholders. Yet somewhat ironically, commercial enterprises
benefit most from open source.

Open Source licenses mostly fall into one of the following buckets: Public Domain (not actually a
license, but a dedication), Attribution Style (such as the MIT or BSD), weak copyleft (LGPL), and
strong copyleft (GPL or AGPL). When it comes to compliance, the copyleft licenses are less
“proprietary friendly” than the others and some compliance programs only focus on those license
types via various degrees of exclusion. Increasingly, companies are concerning themselves with the
greater task of finding all the open source in their products and creating a Bill of Materials. An
example is that your mobile phone – whether from Apple or an Android provider - will contain a list
of the open source third party software present. Companies are also placing their catalogues of open
source components online. For example, you can see all the third party open source that goes into
Ford Motor Company’s infotainment system at https://corporate.ford.com/legal/ford-open-
source.html. It is an extensive list. By creating this information and placing it online, Ford is telling
its customers that it is compliant and that it has a process in place. That process is designed to instil
confidence on the part of Ford vendors and customers that they themselves will know what is in their
products (if, for example, they were to incorporate Ford software). Of equal importance is the
capability of knowing whether a third party component contains software vulnerabilities. The famous
Equifax hack resulted in millions of credentials being lost, costly legal repercussions, and the firing of
CEO Rick Smith. Could this particular breach have been circumvented? Yes. Equifax was using a
third party component with a known and published vulnerability. Not knowing what they had in
their software cost them millions of dollars and a seriously tarnished reputation.

Why should anyone care? After all, when I buy/license software I am trusting someone else to take
care of compliance. So Ford, or the Acme Anvil Company or any other enterprise from which I
purchase (actually, license) software is responsible for knowing what they have provided and what
their legal obligations may be. Yet unless my engagement with the software involves no further
distribution this stance does not hold true, as copyright licenses such as those found in software apply
on any instance of distribution. If you inherit a problem, it can become your problem if adequate
understanding is not present. Invariably, whenever a licensing snafu becomes public, the responsible

4 https://www.gnu.org/philosophy/free-sw.en.html

Journal of Open Law, Technology, & Society Vol. 11, Issue 1

https://www.gnu.org/philosophy/free-sw.en.html

Open Source Compliance and Goldilocks: Too Little, Too Much, Just Right 43

company will blame an outside consultant, contractor … whomever, but this stance in no way
mitigates their responsibility to make sure what they inherited and subsequently passed on through
the supply chain is correctly and sufficiently compliant. Hence the need for a Bill of Materials
(BoM).

Compliance must address one issue: licensing obligations must be met. If your goal is to conform
with licensing terms, you must give proper attribution where it is required. The BSD and MIT are
examples of attribution style licenses. If a license is copyleft, then the user’s obligations are greatly
increased and so, by the way, is the likelihood of litigation. It is my personal contention that fear of
litigation should not be the motivation behind meeting one’s licensing obligations. There are two
better reasons. First, obeying FOSS licensing terms is the right thing to do from an ethical
perspective. The Zlib license expresses this in plain English: “you must not claim that you wrote the
original software.” That should be easy enough to understand. Additionally, companies and persons
who are reputable should have an easier time selling their products if they are perceived as being fair
and ethical and software-community friendly. As mentioned, the ability to produce a BoM may be a
necessity for management, and it equally can be simply appreciated by customers as an example of
care and consideration for both acknowledged authorship and legal correctness.

Why is Compliance Difficult?

Both the proliferation of open source licenses and terms of certain licenses have made
compliance a non-trivial matter. As of this writing, there are over eighty open source licenses
listed by the Open Source Initiative. For a quick comparison of many of these licenses in table
format, see the Wikipedia article ‘Comparison of free and open-source software licenses.’5

The GPL v2.0 license has 2,965 words. The GPL v3.0 clocks in at a hefty 5,660 words. Copyleft
licenses evoke ideas such as derivative works, methods of compilation, distribution, aggregate works,
etc. Some licenses that are commonly applied to software appear to be designed for other works of
creative good such as the Creative Commons family of licenses and their origin in literature, imagery
and similar works. Sometimes, knowing what licensing terms are applicable and how their
obligations can be met is a sticky situation. Software engineers are not expected to be lawyers or
licensing experts – but they do need to be familiar with the basic concepts of licensing. Furthermore,
it is common to see upward of twenty different types of FOSS licenses in a single product. One
product I recently looked at had over fifty different licenses or license combinations. Those are a lot
of terms with which one must be familiar! This is not a simple matter if the correct approach is not
used.

Complicating the issue of compliance is that software engineers can be notoriously independent
minded given the nature of their work. Even if they are aware of licensing issues, they cannot be
inherently trusted to be diligent given the practical difficulties imposed by writing software that
works and delivering it on time. They may simply have other priorities, a situation that can be
understood without judgement, but with the observation that it exists in production environments.

With all that said, one of the most difficult challenges with meeting FOSS obligations is knowing
what is in your code. Not too long ago, it would be possible to pull the code from a repository and
analyse it for third party materials. This has become much more challenging with the growing
popularity of build systems that assemble code at build time (or even run time). For example, why
have a hard copy of jQuery in your company’s repository if you can fetch the most up-to-date
version of what you need from an online CDN (Content Delivery Network)? Software as a Service
such as The Cloud, and containers such as Docker, make knowing what goes into a build even more

5 https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses

Journal of Open Law, Technology, & Society Vol. 11, Issue 1

https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses

44 Open Source Compliance and Goldilocks: Too Little, Too Much, Just Right

difficult. As alluded above, modern build processes may define what code will go into a program, but
that code does not necessarily need to reside on your servers. This is becoming the norm rather than
the exception and it creates a further challenge in knowing what third party open source you are
building into your product.

Psst … You Wanna Buy a Company?

Mergers and acquisitions (M&A’s) are an important part of the tech ecosphere. When larger
technology companies wish to acquire another company, both sides must perform their due diligence.
A business that is acquiring a software company will want to know that the software assets they are
purchasing can be monetized. A company that is being bought may need to prove that the software
they built has commercial value. The target company may need to prove that the intellectual property
they claim is theirs actually belongs to them or is freely available under a proprietary-friendly license.
If the software assets are unknown (the company cannot identify what goes into their build) or is
built on non-proprietary-friendly licensed software, then it is possible for a deal to fail or the
acquisition terms may be re-evaluated. Neither option represents a favourable outcome with the
exceptional of marginal benefits for the purchaser in revising acquisition costs down.

It follows that an acquiring company will almost always seek the assistance of a law firm that
specializes in these types of deals. When it comes to inspecting code for licensing issues … well,
there are companies that specialize in that also.

What is the Right Amount of Compliance

The right amount of compliance not only depends on the size of the company, but the type of
software product you are developing and how it is distributed. Projects may be entirely open source,
may be proprietary but have open source APIs or may be what is now referred to as open-core.
Consumer electronics and mobile apps are a much higher risk than web services because of the
distribution model of each. That is to say, in the cases of web services, it is likely that third party
components sitting in the cloud are often not considered to be distributed with the exception of code
under the Affero GPL, which provides some mechanisms to address this use-case.

Open-core is a new name for something that has been going on for years. It is a combination of open
and closed source, with the chief idea being that you can get some community contribution and
acceptance and allow for some usage of a product without such users needing to purchase the
software except in certain situations. These situations can often be defined as the full enterprise
experience, various additions which will not in themselves be free or open source. This approach
appears to be achieving a greater degree of popularity than it once had and, now that it has a name,
also seems to have gained greater legitimacy. From an open source compliance perspective, open-
core can be difficult to manage, and the cut-off point between the open code and the closed additions
can cause friction.

The Cloud has changed what it means to deliver software. Not too long ago, purchasing software
meant getting a media disk or downloading a product onto your server. That model of software
delivery is becoming less relevant given how software products are delivered today, with The Cloud
or SaaS rising dramatically and on-premise solutions are becoming less popular. This is important to
open source licensing because most licenses were written before cloud computing existed. It is
legitimate to believe that a GPL licensed software library may be used in the cloud and that does not
constitute delivery and therefore the terms of the GPL license are not relevant to that situation. The
Affero GPL (AGPL) license addresses that situation, but it has not been widely adopted, and
certainly has not found favor with any significant number of companies in this space.

Journal of Open Law, Technology, & Society Vol. 11, Issue 1

Open Source Compliance and Goldilocks: Too Little, Too Much, Just Right 45

Let’s pull back to the assertion from earlier that open source compliance is not easy. Years ago, when
I was developing software for a large company, one of my colleagues handed me a clipboard and told
me that, if I ever used any GPLd software, I should log it on the clipboard. I nodded my head
knowingly and he left. I had no idea what the GPL was and there was little danger of anything being
recorded on that clipboard. Fortunately, as I recall, I wrote almost everything by hand. Today, there
is a word for people who write everything by hand: unemployed.

So how much compliance is required? That is sort of a trick question. If you and your company are
developing software that will be distributed, then you and your company are expected to obey all
intellectual property laws and be aware of the licenses of all third party materials incorporated into
your software. In a very real sense, I have never seen 100% compliance and mostly there are no
consequences. However, M&As have been aborted when it was discovered through an IP audit that
the chief product being acquired was really a derivative work of GPL licensed software. One
company, for which I was contracting, had been sued in the past for not complying with the GPL and
I have seen one case where a company purchased a competing company’s product so that it could
analyze it to determine if they were violating any software licenses (especially the GPL). I call this
“weaponizing” the GPL. These things do not happen often, but they do happen. For example, former
Linux developer Patrick McHardy sued Geniatech and over thirty other companies in German courts
over purported violations of the GPL. McHardy was unsuccessful in the Geniatech case, but his
efforts overwhelmingly appear to be financial gain and not the safe-guarding of open source
principles.6

Compliance is a Process

Some companies take a “ticking the box” approach. They may purchase some expensive software
that promises to analyse their code and produce a report of all the third party components along with
their licenses. I have evaluated many of these products and none of them can really accomplish the
goal of sufficiently discovering third party materials. Why? There are a variety of reasons. Much of it
has to do with how modern software is built. It is (or was) common for jQuery to be pulled in at run
time by grabbing code from a “trusted” repo when it is needed. Sometimes code is pulled in
programmatically at run time. Another example is Docker. Docker provides a platform-as-a-service
and it also complicates life. Source code can be wholly taken from a third party project and it can
even retain attribution, but it may be undetectable by enterprise scan tools. Such tools tend to do a
great job at detecting unmodified binaries because they have a unique hash signature that can identify
them. However, a simple JavaScript code section or snippet may go undetected.

It follows that simply purchasing a product and running scans is unlikely to produce a desired level of
compliance and that a coherent process is instead required. From what I have seen, OpenChain has
done an incredible job of defining those process inflection points, policy needs, and training
approaches. For small companies, the overhead, time and effort required to implement those
processes may be unaffordable in terms of both time and money. Instead, they may wish to do the
following: train their engineers in open source licensing concepts. This may consist of a brief course
given online or in-person. A trained engineer will know, most importantly, to record the license of a
third party component. They may seek permission informally or formally and make an intelligent
decision as to whether a given library poses an intellectual property risk. A small company that
produces a non-trivial amount of code may also want to have an annual IP checkup by a consulting
company.

Whether a company is large or small, the first step to compliance is training. A well-trained
engineering staff, including managers, will ask the important questions before they become
problems. Catching a problem after third party materials are introduced into your codebase may

6 https://www.zdnet.com/article/linux-beats-internal-legal-threat/

Journal of Open Law, Technology, & Society Vol. 11, Issue 1

https://www.zdnet.com/article/linux-beats-internal-legal-threat/

46 Open Source Compliance and Goldilocks: Too Little, Too Much, Just Right

require costly refactoring and testing. So, the first step, whether a company is small or large, is to
educate all involved in the production of a software product in basic license compliance. The Linux
Foundation has a great course7 that is accessible to beginners and also useful to those who are already
familiar with FOSS. I also highly recommend the following video by IP lawyer Heather Meeker.8 If
training is not mandatory, then it may not be effective. Training is the very foundation of
compliance.

Formal documented procedures, policies, and resources must be a part every company’s FOSS
compliance program. Policies should include more than how engineers should handle copyleft type
licenses, but attribution style licenses, commercial licenses, situations where a license is unknown or
does not exist. Policies must also consider inbound and outbound materials. Of equal importance is
knowing what the workflow should be when licensed material, which is incompatible with a
company’s intellectual property goals, is found in their codebase. Employees must know where they
can get answers regarding the use of a particular license, what to do if something appears to be
unlicensed, what to do if licensing terms are complex, whether they are allowed to contribute to
outside open source projects and so on. Knowing where these documents are stored can be part of
the training program. Really well written, thoughtful documentation is only helpful if it is easily
accessible. For some no cost policy and procedures suggestions, I recommend visiting the Blue Oak
Council website. 9

Producing a Bill of Materials for your products demonstrates to your own staff and your customers
that you know what is in your code and that your company is serious about diligence in intellectual
property and licensing matters. You cannot fix a problem if you do not know that it exists. For small
codebases, this may be a manual effort. Larger codebases will require some type of discovery tool.
Naturally, the larger the codebase, the greater the effort will be required to produce a bill of
materials. A variety of tools exist to help with this problem, and they can be expensive, complicated
enterprise tools, or they themselves may be open source. Smaller companies will naturally gravitate
toward simpler, less expensive solutions or they may outsource the effort. Outsourcing tends not to
scale up in terms of cost, so larger companies are more likely to have in-house staff. There are
standards for Bill of Materials around open source, with SPDX being a key example with growing
adoption for both manual and automated review processes10.

Open source audits are not only crucial for M&A activity but should be incorporated into the
software lifecycle. It can be understood that for smaller companies an M&A may be the only time an
audit occurs, and it should equally be understood that it pays to be wary as such deals have failed due
to a lack of diligence. Larger companies will want to keep continual tabs on their licensing exposure.
Some companies are the proverbial Red Shirts of Star Trek fame. That is to say, they have a target
on their back and parties aiming at that target may be hackers, customers, or even their competition.
Although FOSS lawsuits are not very common, there have been occasions where licensing has been
“weaponized” as in the case of CoKinetic Systems Corp. vs Panasonic Avionics.11 Audits can be
performed in-house, automated in the pipeline, or outsourced. There are an increasing number of
tools, some free and some quite expensive, that can be employed for this effort. It is important to
study the available tools and choose the appropriate ones given the time and money will be invested
in implementing them. One of the best investments a company can make is choosing the right
personnel to implement such programs, often those with a technical and legal background, who may
have contributed to open source projects or be active in open source advocacy organizations.

7 https://training.linuxfoundation.org/training/beginner-guide-to-oss-development-lfd102/
8 https://www.youtube.com/watch?v=gF4b1TA5Q5w&list=PLAVikl6VpxPeBtplWOnfzNmiUz529AYAy
9 https://blueoakcouncil.org/
10 https://spdx.org
11 https://resources.whitesourcesoftware.com/blog-whitesource/the-100-million-case-for-open-source-license-compliance

Journal of Open Law, Technology, & Society Vol. 11, Issue 1

https://resources.whitesourcesoftware.com/blog-whitesource/the-100-million-case-for-open-source-license-compliance
https://spdx.org/
https://blueoakcouncil.org/
https://www.youtube.com/watch?v=gF4b1TA5Q5w&list=PLAVikl6VpxPeBtplWOnfzNmiUz529AYAy
https://training.linuxfoundation.org/training/beginner-guide-to-oss-development-lfd102/

Open Source Compliance and Goldilocks: Too Little, Too Much, Just Right 47

Conclusion

Although open source compliance can be tricky and require resources it is not inherently necessary
to employ dedicated personnel and enterprise solutions to accomplish a reasonable degree of best
practices. This is particularly in situations where any resource allocation will compete for the
resources required to actually create a product. This situation will often be the case with smaller
companies and that is understandable that choices need to be made. However, compliance training
courses, policy examples, and extensive information about effective processes can be found online.
The first time a customer requests a Bill of Materials may be the catalyst for building such a program
but it is hardly the sole reason for having one or regarding such activity as time limited. As a
company grows, the compliance function should also grow to ensure ongoing effectiveness in the use
of third party copyright for protection, for effectiveness and for solid positioning in both product and
M&A activities. Over time and as experience grows the compliance function tends to move from
legal review to operations and engineering. This saves the lawyers for the more difficult or unusual
cases and reflects the fact that mature companies are expected to have trained personnel and
processes in place. FOSS compliance is no longer an option – it is a necessity – and today it is a
necessity that can be accomplished by organizations of any size and at any stage of growth with a
little effort.

Further Reading

https://techcrunch.com/2019/01/12/how-open-source-software-took-over-the-world/

https://corporate.ford.com/legal/ford-open-source.html

https://www.zdnet.com/article/cern-leaves-microsoft-programs-behind-for-open-source-software/

https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-
to-patch-two-month-old-bug/

About the author

Robert Marion is an Open Source Analyst and software engineer who has focused on open source
compliance for over ten years and who has trained numerous corporations in multiple countries in
open source compliance and compliance enterprise tools. Mr. Marion still writes software. When he's
not working with code he enjoys playing guitar and touring the country on his motorcycle.

Journal of Open Law, Technology, & Society Vol. 11, Issue 1

https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://www.zdnet.com/article/cern-leaves-microsoft-programs-behind-for-open-source-software/
https://corporate.ford.com/legal/ford-open-source.html
https://techcrunch.com/2019/01/12/how-open-source-software-took-over-the-world/

48 Open Source Compliance and Goldilocks: Too Little, Too Much, Just Right

Journal of Open Law, Technology, & Society Vol. 11, Issue 1

Licence and Attribution

This paper was published in the Journal of Open Law, Technology, & Society, Volume
11, Issue 1 (2019). It originally appeared online at

http://www. jolts . world

This article should be cited as follows:

Marion, Robert (2020) 'Open Source Compliance and Goldilocks: Too Little, Too
Much, Just Right', Journal of Open Law, Technology, & Society, v.11(1), pp 41 – 48

DOI: 10.5033/ jolts .v1 1 i1. 138

Copyright © 2020 Robert Marion

This article is licensed under a Creative Commons Attribution 4.0 CC-BY available at

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
http://www.doi.org/10.5033/jolts.v11i1.138
http://www.doi.org/10.5033/jolts.v11i1.138
http://www.doi.org/10.5033/jolts.v11i1.138
http://www.doi.org/10.5033/jolts.v11i1.138
http://www.doi.org/10.5033/jolts.v11i1.138
http://www.doi.org/10.5033/jolts.v11i1.138
http://www.jolts.world/
http://www.jolts.world/
http://www.jolts.world/
http://www.jolts.world/

	No Free Beer for You
	Why is Compliance Difficult?
	Both the proliferation of open source licenses and terms of certain licenses have made compliance a non-trivial matter. As of this writing, there are over eighty open source licenses listed by the Open Source Initiative. For a quick comparison of many of these licenses in table format, see the Wikipedia article ‘Comparison of free and open-source software licenses.’

	Psst … You Wanna Buy a Company?
	What is the Right Amount of Compliance
	Compliance is a Process
	Conclusion
	Further Reading

