
Packaging Open Source 83

Packaging Open Source

Mark Webbinka

(a) Visiting Professor of Law and Executive Director of the
Center for Patent Innovations at New York Law School.

With thanks to Daniel Hopkin for his invaluable assistance in
the preparation of this article

DOI: http://dx.doi.org/10.5033/ifosslr.v1i2.26

Abstract
Now with the increasing popularity of virtual computing environments
we are observing the packaging of operating systems, including Linux,
with applications to create software appliances, essentially
applications that carry their operating system with them. With this
rapidly expanding market opportunity, traditional proprietary software
vendors are increasingly interested in the “rules of the road” for open
source licensing and, in particular, for packaging Linux with an
application into a software appliance. This paper is intended to
provide background information for such application developers
interested in creating software appliances utilizing open source
components while ensuring both their open source license obligations
as well as protection of their own copyrights and patents.

Keywords
Law; information technology; Free and Open Source Software

Info
This item is part of the Articles section of IFOSS L. Rev. For more
information, please consult the relevant section policies statement.
This article has been independently peer-reviewed.

Running proprietary (non-open source) software on an open source operating system, such as
Linux, has become commonplace. Major proprietary software vendors such as IBM, Oracle, and
Adobe have adapted their proprietary applications to run on top of a Linux operating system
without concern for open source licensing issues. In addition, Linux vendors frequently ship
proprietary applications with their Linux distributions, although the packaging practices and open
source license compliance may vary from one to the next. Major device manufacturers, including
Sony, Philips, Cisco, and Nokia, have utilized a Linux operating system in both their open
(modifiable) and closed (non-modifiable) devices for some time, although their open source
license compliance has also frequently required greater effort. Even with open source versions of
JAVA we are seeing both open source and proprietary files combined in the same class libraries.

Now with the increasing popularity of virtual computing environments we are observing the
packaging of operating systems, including Linux, with applications to create software appliances,
essentially applications that carry their operating system with them. With this rapidly expanding
market opportunity, traditional proprietary software vendors are increasingly interested in the
“rules of the road” for open source licensing and, in particular, for packaging Linux with an
application into a software appliance. This paper is intended to provide background information

International Free and Open Source Software Law Review Vol. 1, Issue 2

http://dx.doi.org/10.5033/ifosslr.v1i2.26
http://www.ifosslr.org/ifosslr/about/editorialPolicies#sectionPolicies

84 Packaging Open Source

for such application developers interested in creating software appliances utilizing open source
components while ensuring both their open source license obligations as well as protection of their
own copyrights and patents.

The paper will first review the copyright, patent, and key license provisions that arise in an open
source context. The paper will address the more commonplace packaging of open source
applications within mainstream Linux distributions and the license compliance issues that arise.
Next, the paper will examine alternative packaging models, including embedded devices, JAVA
class libraries, and software appliances. Finally, the paper will suggest some best practices for
software application developers to maximize their value and to minimize their risks.

Copyrights and Patents in the Software Context

Under U.S. law any software will be automatically covered by copyright at the time it is developed
unless the author expressly disclaims copyright protection or the code, for a variety of exceptional
reasons, does not rise to the level of copyright protection. For our purposes, we will assume that
most code is subject to copyright protection. Such copyright protection extends to both the source
code and binary versions of the software, the latter being viewed much in the same light as a
translation of a literary work.

There are three principal rights under copyright law that are held by the copyright holder in
software: the right to copy the software, the right to modify the software, and the right to
distribute the software. Under traditional proprietary models, the copyright holder elects not to
share these rights with the party receiving a license in the software. Thus, under most proprietary
software licensing models the end user has no right to copy the software (other than the statutory
right to make a back-up copy of the software under 17 U.S. Code § 117). In addition, proprietary
vendors commonly include restrictions on the decompiling or reverse engineering of the software
(such restrictions being of limited scope with respect to such actions taken purely for the purpose
of interoperability), thus barring the modification of the software. Finally, proprietary licenses will
generally limit the redistribution of the software to the absolute transfer of the single copy covered
by the license. As a consequence, packaging issues in the purely proprietary software context tend
to be matters of negotiated contracts, not merely end user licenses.

By contrast, under open source licenses1 copyright holders share these rights to copy, modify, and
redistribute, sometimes without restriction and sometimes with limited restrictions as to
obligations arising upon redistribution. As a consequence, the licensee under an open source
license will enjoy rights to modify, combine, copy, and redistribute software that they would not
typically enjoy under a proprietary license. In this context the open source licensee must then be
aware of treatment under copyright law of modified or combined software code.

U.S. copyright law addresses such modifications and combinations as, respectively, derivative
works and compilations, which includes collective works. The formal definitions for these terms
may be found in 17 U.S. Code § 101:

A “derivative work” is a work based upon one or more preexisting works, such as a
translation, musical arrangement, dramatization, fictionalization, motion picture
version, sound recording, art reproduction, abridgment, condensation, or any other

1 When referring to open source licenses in this paper, the author limits the reference to those licenses that have been
certified as complying with the Open Source Definition as promulgated by the Open Source Initiative. That list of
licenses may be found at http://www.opensource.org. The one exception to this convention is the inclusion of the GNU
General Public License, version 3, as an open source license.

Vol. 1, Issue 2 International Free and Open Source Software Law Review

http://www.opensource.org/

Packaging Open Source 85

form in which a work may be recast, transformed, or adapted. A work consisting of
editorial revisions, annotations, elaborations, or other modifications which, as a
whole, represent an original work of authorship, is a “derivative work”.

A “collective work” is a work, such as a periodical issue, anthology, or encyclopedia,
in which a number of contributions, constituting separate and independent works in
themselves, are assembled into a collective whole.

A “compilation” is a work formed by the collection and assembling of preexisting
materials or of data that are selected, coordinated, or arranged in such a way that the
resulting work as a whole constitutes an original work of authorship. The term
“compilation” includes collective works.

It is important to understand the distinctions between these three forms of works. The first
distinction is between compilations and collective works. Note that all collective works are
considered a form of compilation, but not all compilations are collective works. That said, the
primary distinction between the two is that compilations may consist entirely of non-copyrightable
materials, where as a collective work will contain only copyrightable material. This can be better
visualized in non-software terms. If I have factual information, say the names of all of the people
who live in a city and their addresses, that information is not inherently protectible by copyright,
i.e, there is nothing unique in the expression of that information – it is what it is. However, if I
organize that same information in a unique way, say by first names, that particular organization
may be protectible as a compilation even though the data within the compilation is not inherently
protectible by copyright. Compilations may also exist in a combination of copyrightable material
and non-copyrightable material, e.g., a book containing court opinions (which are public
information and in the public domain) which are organized and annotated to provide more useful
information to persons wanting to understand the decision.

By contrast, collective works consist of separate and independent copyrightable materials that have
been organized into a single work. The typical non-software examples are periodicals,
anthologies, or encyclopedias. Although collective works are considered a subset of compilations,
they actually have as much, if not more, in common with derivative works than they do with non-
collective work compilations in that both derivative and collective works are based upon pre-
existing copyrightable works.

The key question is then where to draw the line between a work which is merely a collective work
and a work that constitutes a derivative work. The treatise Nimmer on Copyright2 identifies the
following distinction:

A derivative work consists of a contribution of original material to a pre-existing work
so as to recast, transform or adapt the pre-existing work. . . . A collective work will
qualify for copyright by reason of the original effort expended in the process of
compilation, even if no new matter is added.

In either case, the contributions required to produce a new work, whether a derivative or
collective, must be more than minimal and meeting the standards for copyright protection.3 So
what is the distinction between derivative works and collective works when it comes to software.
The distinction largely arises in the number of underlying works involved. By definition a
collective work consists of more than one underlying work while a derivative work consists of a

2 Nimmer on Copyright, Lexis-Nexis 2010, release no. 72, §3.03[A]
3 For a more thorough discussion of what constitutes sufficient originality to qualify for copyright protection, see

Originality Requirements Under U.S. and E.U. Copyright Law, © 2007 Software Freedom Law Center found here:
http://www.softwarefreedom.org/resources/

International Free and Open Source Software Law Review Vol. 1, Issue 2

http://www.softwarefreedom.org/resources/

86 Packaging Open Source

single underlying work. But as with all such matters, there is a point at which this simple
distinction no longer holds. When one underlying work is materially modified and so combined
with a second work such that the combination of the two effectively takes on a singular identity in
terms of use and perception, the combination has moved more closely to the definition of a
derivative work. At the same time, a collective work may include one or more underlying works
which are, themselves, derivative works of pre-existing works.

This distinction between derivative and collective works may more clearly be drawn in software
when examining how two independent works relate to each other. Where two independent works
are capable of sharing information, passing such information back and forth through published
interfaces or by a temporary connection, such as a pipe, and not by a modification of one of the
works by the other work, those works when combined in a single package would constitute a
collective work but neither would likely be considered a derivative of the other. On the other
hand, where one such application, when compiled at the same time as a second application,
modifies the second application in such a way as to cause that second application to act in a unique
manner with the first application, the combination would likely constitute a derivative work of the
first program even though the two works, in their source code form, are separate and independent.

Finally, the copyright holder in the compilation holds a copyright only in the compiled work, not
necessarily in any of its component parts (although it would be somewhat atypical for the
copyright holder in a collective work to not have produced some new, separately copyrightable
work, in producing the collective work). Thus, the copyright holder in a compilation or collective
work must have permission from the copyright holder of each component part to include it in the
compilation or collective work.

As we will see, some open source licenses address only derivative works and others address both
derivative works and compilations/collective works. And, of course, whether a new work, which
utilizes only some but not all of a pre-existing work, is a derivative work is a matter of statutory
interpretation and case law. For our purposes in this paper, we will consider all works that
incorporate some or all of the code of a pre-existing work to be derivative works.

At the same time, software code developed in or imported into the U.S. may be subject to patent
protection under U.S. law. Such patents coverage is not defined by specific source or object code
but, rather, by the claims set forth in the patent. Whether specific source or object code infringes a
given patent depends on whether the structure and operation of that source code (i.e., the methods
it employs) reads on the claims of the patent.

Such so-called “software patents” do not distinguish between code licensing models. As a
consequence, both open source and proprietary software licensing models need to be concerned
with software patents. The manner in which such licenses address the subject of software patents
varies considerably. In this paper we will only concern ourselves with the manner in which
various open source licenses address software patents.

Open Source Licenses – Derivative Works, Collective Works and
Patents

The Open Source Initiative lists 60 licenses that meet the OSI definition of open source. Although
large in number, the differences among many of these licenses are relatively small. In fact, some
are virtually identical but for their names, e.g., the Common Public License and the IBM Public
License. All of these licenses cover the source code, and all permit the licensee to copy, modify,

Vol. 1, Issue 2 International Free and Open Source Software Law Review

Packaging Open Source 87

and redistribute the code.

The simplest group of licenses are those that permit the exercise of the rights to copy, modify, and
redistribute without limitation. These include the widely-used Berkeley Software Distribution
(BSD) license, MIT license, and Apache Software License. Source code, and corresponding
binaries, of software licensed under these licenses may be readily incorporated with other open
source code or even into proprietary code without concern over license compatibility. That is the
upside. The downside is that, in their brevity, these licenses do not address patents in any manner.
One solution to this problem, as advanced by Intel, has been to combine the BSD with an express
patent license, found here: http://infiniband.sourceforge.net/duallicense.htm.

Of the open source licenses that incorporate a restriction on redistribution, the most widely used
are the GNU General Public License (both version 2 and version 3), the GNU Lesser General
Public License (version 2), the Apache License version 2, Artistic License version 2, Common
Public License, and Mozilla Public License version 1.1. Let us consider how each of these
licenses addresses issues of derivative works, collective works, and patents. For our purposes we
will consider any mere compilation that does not rise to the level of a collective work to be a non-
issue.

GNU General Public License, version 2

(“GPLv2” - http://www.opensource.org/licenses/gpl-license.php)

As with other open source licenses, GPLv2 permits licensees to make modifications of the work
and to redistribute the work, either in its original form or as modified (GPLv2 refers to such
derivative works as “works based on the Program”) so long as the distributed work continues to be
covered by this license (section 2 of the license). That aspect of GPLv2 is fairly well understood.
But GPLv2 does not only address derivative works; it also addresses compilations in the form of
collective works (which it refers to as “mere aggregations”). For compilations, or mere
aggregations, GPLv2 does not apply or place limitations on the licenses pertinent to non-GPLv2
works included in the compilation. The same is not true for collective works. With respect to
collective works, GPLv2 states in Section 2:

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

This language has been commonly misunderstood to mean that all works included in such a
collective work are re-licensed under GPLv2, thus overriding their original license. That is not the
case for two reasons: (1) it is not what the language says; and (2) the copyright holder of GPLv2
code has no legal right to impose a license change on the holders of the copyrights in the other
code included in the collective work. What the GPLv2 licensor can, and does, say is, if you are
going to include my work in a collective work, then the collective work must also be licensed
under GPLv2. What that means is all works included in the collective work must either be under

International Free and Open Source Software Law Review Vol. 1, Issue 2

88 Packaging Open Source

GPLv2 or under a license that is compatible with GPLv2.4 This concept of compatible licensing is
manifested in the Section 2 phrase “whose permissions for other licensees extend to the entire
whole.” It doesn't say that GPLv2 is applied to each component, only that the permissions granted
under GPLv2 (those being the permissions to copy, modify and redistribute in source code form)
apply to each component.

Finally, GPLv2 does not include an express patent license grant. Rather, in Section 6 the GPLv2
makes clear that no other restrictions can be imposed on recipients, which would include any
restriction arising from a patent held by the distributing party. In section 7 the GPLv2 makes clear
that, if conditions are imposed on the distributing party that would interfere with the rights granted
under the license, the distributing party is not to redistribute the software. These provisions have
been construed as granting an implied license from a GPLv2 distributing party under any patent
claims of that distributing party that read on GPLv2 code they distribute and preventing such a
distributing party from entering into any form of license agreement with respect to patent rights
that would not extend to all downstream recipients. GPLv2 does not prevent distributing parties
from entering into other forms of agreements related to patents as evidenced by the Microsoft-
Novell arrangement announced in the fall of 2006.

GNU General Public License, version 3

(“GPLv3” - http://www.fsf.org/licensing/licenses/gpl.html)

While in most instances GPLv3 operates in the same manner as GPLv2, there are some important
distinctions. As with GPLv2, GPLv3 addresses both derivative works and collective works with
the following language from Section 0:

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring
copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.
A “covered work” means either the unmodified Program or a work based on the Program.

The language from Section 5(c) makes clear that all such derivative and collective works must be
licensed under GPLv3:

You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable
section 7 additional terms, to the whole of the work, and all its parts, regardless of
how they are packaged. This License gives no permission to license the work in any
other way, but it does not invalidate such permission if you have separately received
it.

A key difference regarding collective works between this language and that of GPLv2 is that
GPLv3 now states that it will apply to all parts of the collective work. Gone is the reference in
GPLv2 to “permissions” which allowed GPLv2-compatible licenses to govern other parts. This is
an important distinction that should not be lost.

GPLv3 deals with compilations in much the same manner as GPLv2 with the following provision
in Section 5:

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined

4 See http://www.fsf.org/licensing/licenses/ for a list of GPL-compatible licenses

Vol. 1, Issue 2 International Free and Open Source Software Law Review

Packaging Open Source 89

with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

This language now provides a clear statement that distinguishes a compilation from a collective
work and makes clear that works licensed under GPLv3 can be included in such compilations so
long as nothing in the license for the compilation interferes with the operation of the GPLv3
license with respect to the code licensed under GPLv3.

Unlike GPLv2, GPLv3 contains an express patent license in Section 11. That license only applies
if the licensor makes a modification to GPLv3 licensed code and then redistributes the code, at
which point the license applies not only to the licensor's modification but to the entire modified
work, whether merely a derivative work or a collective work. There continue to be restrictions in
GPLv3 on patents licensed from third-parties that apply to the GPLv3-licensed work, and any
party looking to redistribute a modified GPLv3-licensed work would be well advised to be familiar
with these provisions.

GNU Lesser General Public License, version 2.1

(“LGPLv2” - http://www.opensource.org/licenses/lgpl-license.php)

The LGPLv2 mirrors the GPLv2 in its application to derivative works, collective works, and
compilations. The difference arises in Sections 5 and 6 of LGPLv2 where it permits the use of
LGPLv2-licensed code (typically, libraries) with code licensed under a different license, including
a proprietary license. The one limitation imposed on such combinations is that the licensor of the
entire work (including both the non-LGPLv2 code and LGPLv2 code) must provide the licensee
with the source code for the LGPLv2-licensed code and permit the licensee to make modifications
in that code AND not prohibit the licensee from reverse engineering the non-LGPLv2 code
included in the entire work solely for purpose of debugging the modifications to the LGPLv2
licensed code. This provision does not grant the licensee the right to copy, otherwise modify, or
redistribute the non-LGPLv2 code included in the entire work.

LGPLv2 contains provisions in Sections 10 and 11 pertinent to patents that correspond with
Sections 6 and 7 of GPLv2.

Apache License, version 2

(http://www.opensource.org/licenses/artistic-license-2.0.php)

The Apache License does not follow the same formula for derivative and collective works, but it
still operates in much the same manner as the GPL. The Apache License uses the following
definition:

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

Note two things about this definition. A modification that does not rise to the level of an original
work of authorship, i.e., it is not protectible by copyright, does not create a derivative work. Thus

International Free and Open Source Software Law Review Vol. 1, Issue 2

90 Packaging Open Source

the author of such a de minimis change would have no independent copyright in the work.
Second, no collective work is created if a separate work merely links or binds by name to the
interfaces of the Apache-licensed work or derivative thereof. Using the terms linking and binding
in this context causes some confusion because in GPL semantics these terms are used to imply two
pieces of code that have been combined in such a manner as to create a single work unless the
licensor provides an exception.5 Hence, the standard approach for the Apache License in this
context is somewhat equivalent to the GPL+exception. By contrast with the GPL, the Apache
License makes no specific reference to compilations likely on the premise that no such reference is
necessary.

The Apache License contains an express patent license grant in Section 3. Unlike GPLv3, the
patent license only extends to those patents held by a contributor of code and that apply to that
contributor's contribution, not to the entire work.

Artistic License, version 2

(http://www.opensource.org/licenses/artistic-license-2.0.php)

The Artistic License deals separately with derivative works, collective works, and compilations.
In addition, the Artistic License differentiates derivative works into (a) those works for which the
modifications were explicitly requested by the copyright holder for the licensed work, referred to
as the Standard Version, and (b) those works containing modifications not explicitly requested by
the copyright holder for the licensed work, referred to as Modified Version. This approach parses
copyright law in a rather unusual way in that it permits modifications, but the manner in which you
document and redistribute the derivative work varies depending on whether it is a Standard
Version or a Modified Version, with the redistribution obligations being far more burdensome for
Modified Versions.

The Artistic License addresses compilations in Section 7:

You may aggregate the Package (either the Standard Version or Modified Version)
with other packages and Distribute the resulting aggregation provided that you do not
charge a licensing fee for the Package. Distributor Fees are permitted, and licensing
fees for other components in the aggregation are permitted. The terms of this license
apply to the use and Distribution of the Standard or Modified Versions as included in
the aggregation.

This is pretty straightforward and should not be a cause for confusion or concern.

The Artistic License addresses collective works in Section 8:

You are permitted to link Modified and Standard Versions with other works, to embed
the Package in a larger work of your own, or to build stand-alone binary or bytecode
versions of applications that include the Package, and Distribute the result without
restriction, provided the result does not expose a direct interface to the Package.

This is one of the more challenging turns of a phrase you will run into in an open source license.
For example, in saying you can redistribute the result “without restriction,” does it mean you can't
place any limitations on what the licensee does with the collective work or does it mean that none
of the restrictions in this license apply. The former would be quite onerous, and the latter could be
stated more clearly. The same for the last phrase of this paragraph when it says “provided the

5 See http://www.fsf.org/licensing/licenses/gpl-faq.html#LinkingWithGPL

Vol. 1, Issue 2 International Free and Open Source Software Law Review

http://www.fsf.org/licensing/licenses/gpl-faq.html#LinkingWithGPL

Packaging Open Source 91

result does not expose a direct interface to the Package.” What does that phrase mean? Does it
mean that you can embed the Package and use the Package within the context of your larger work
so long as some using your larger work is unaware that the Package is included and can't use it
independently. That would appear to be the most logical interpretation, but it could certainly have
been stated more clearly.

Finally, on the subject of patents, the Artistic License included a patent grant, but only from the
Copyright Holder. Specifically, Section 13 states:

This license includes the non-exclusive, worldwide, free-of-charge patent license to
make, have made, use, offer to sell, sell, import and otherwise transfer the Package
with respect to any patent claims licensable by the Copyright Holder that are
necessarily infringed by the Package.

To fully understand this section, you need to refer back to the license's definition of Copyright
Holder:

"Copyright Holder" means the individual(s) or organization(s) named in the copyright
notice for the entire Package.

Because the patent grant is not limited to the contributions of a particular copyright holder, a
subsequent modified version could, in fact, implicate the patents of another, earlier copyright
holder in a manner that copyright holder did not intend. Let's take a hypothetical. “A” is the
copyright holder of a Standard Version, and that Standard Version reads on claims 1 and 2 of a
patent also held by A. However, the Standard Version does not read on claim 3 of that same
patent. “B” comes along and modifies the Standard Version, creating a Modified Version, in a
manner that now reads on claim 3 of A. Under this language, A's Claim 3 would be licensed with
B's Modified Version because A would necessarily be named in the copyright notice (remember,
the party creating a derivative work only holds the copyright in their modifications, not in the
original work that was modified). A further complicating factor in this language is the statement
that the licensed patent claims would include “any claims licensable by the Copyright Holder,” not
solely the claims owned by that Copyright Holder. What if those “licensable” patents are royalty-
bearing or have use restrictions? This requirement would have made more sense had it been
limited to claims “licensable by the Copyright Holder without restrictions or royalties.”

It is worth noting that the Artistic License, version 2 does not appear to be widely used at this time,
and perhaps for good reason. I have included it here to indicate another variation in approach and
to demonstrate the need for careful drafting.

Common Public License, version 1

(“CPL” - http://www.opensource.org/licenses/cpl1.0.php)
Eclipse Public License, version 1

(“EPL” - http://www.opensource.org/licenses/eclipse-1.0.php)

The CPL and EPL are treated as the same license since the text of the licenses are identical in all
but name. The CPL takes yet another approach to derivative works, somewhat defining them in
circular fashion. The CPL defines a Contribution to include a change or addition to an existing
program licensed under the CPL, but excludes from this definition contributions “which: (i) are
separate modules of software distributed in conjunction with the Program under their own license
agreement, and (ii) are not derivative works of the Program.” So, in permitting the creation of
derivative works, the CPL makes clear that compilations are permitted, but it does not really

International Free and Open Source Software Law Review Vol. 1, Issue 2

92 Packaging Open Source

address the concept of collective works at all. In theory, then, a person could modify a CPL-
licensed work specifically for the purpose of including it in a larger work, and so long as they
made the source code for their modified, CPL-licensed work available, they could license the
larger work under any terms they choose, including proprietary license terms. Of course, a key
question in this context is what constitutes a “separate module.” This approach is further
supported by the language of Section 3 which states:

A Contributor may choose to distribute the Program in object code form under its own
license agreement, provided that:

a) it complies with the terms and conditions of this Agreement; and

b) its license agreement:

i) effectively disclaims on behalf of all Contributors all warranties and
conditions, express and implied, including warranties or conditions of title and
non-infringement, and implied warranties or conditions of merchantability and
fitness for a particular purpose;

ii) effectively excludes on behalf of all Contributors all liability for damages,
including direct, indirect, special, incidental and consequential damages, such
as lost profits;

iii) states that any provisions which differ from this Agreement are offered by
that Contributor alone and not by any other party; and

iv) states that source code for the Program is available from such Contributor,
and informs licensees how to obtain it in a reasonable manner on or through a
medium customarily used for software exchange.

This approach gives a licensee wishing to redistribute the ability to incorporate the CPL-licensed
code into larger works, including binary-only works, and to license those larger works under
different license terms so long as the license terms of the CPL continue apply to the incorporated
CPL-licensed work.

The CPL contains an express patent license grant in Section 2.b that is purely contribution based.
This provides certainty to a contributor as to the patent license obligations the contributor is
assuming. In this regard the provision is quite similar to that of the Apache License, version 2.

Mozilla Public License, version 1.1

(“MPL” - http://www.opensource.org/licenses/mozilla1.1.php)

The final license considered is the MPL. It is important because it is the license used for the
popular FireFox browser and Thunderbird e-mail client. One thing unique about the MPL is the
breadth of its scope when defining modifications. Like the CPL and EPL, the MPL defines
modifications as being any change to the code whatsoever. However, both the CPL and EPL then
narrow their scope by stating that the definition of “Contributions” does not include that which
would not constitute a derivative work. The MPL contains no such limitation and, thus, claims to
apply to changes that, in and of themselves, may not constitute copyrightable material. This would
appear to introduce a rather unique, and perhaps undesirable, aspect to the MPL in that any attempt
to assert the license with respect to a non-copyrightable change could only be enforced under
contract law, not copyright law.

Vol. 1, Issue 2 International Free and Open Source Software Law Review

Packaging Open Source 93

That anomaly aside, the MPL is also unique in its approach to both compilations and collective
works, treating them as one and the same. The MPL does so through the grant language contained
in sections 2.1(a) (covering initial contributions):

under intellectual property rights (other than patent or trademark) Licensable by Initial
Developer to use, reproduce, modify, display, perform, sublicense and distribute the
Original Code (or portions thereof) with or without Modifications, and/or as part of a
Larger Work

and 2.2(a) (covering subsequent contributions):

under intellectual property rights (other than patent or trademark) Licensable by
Contributor, to use, reproduce, modify, display, perform, sublicense and distribute the
Modifications created by such Contributor (or portions thereof) either on an
unmodified basis, with other Modifications, as Covered Code and/or as part of a
Larger Work

and reaffirmed with the language in section 3.7:

You may create a Larger Work by combining Covered Code with other code not
governed by the terms of this License and distribute the Larger Work as a single
product. In such a case, You must make sure the requirements of this License are
fulfilled for the Covered Code.

As a consequence, the MPL provides broad rights to combine MPL covered code with any other
code, including a larger work (either a compilation or collective work) so long as you make the
source code of the MPL licensed code available.

The MPL follows the contribution approach to its express patent license grant language, i.e., a
contributor is only providing a patent license to that contributor's contribution, including any
necessary patent license pertaining to the combination of that contribution with the existing work.
There is one last catch to the MPL, and it arises in the context of the express patent license.
According to the language of sections 2.1(b) and 2.2(b), the patent license only pertains to the code
in its source code form. The pertinent language appears in the following:

1.10. ''Original Code'' means Source Code of computer software code which is
described in the Source Code notice required by Exhibit A as Original Code, and
which, at the time of its release under this License is not already Covered Code
governed by this License.

1.9. ''Modifications'' means any addition to or deletion from the substance or structure
of either the Original Code or any previous Modifications. When Covered Code is
released as a series of files, a Modification is:

A. Any addition to or deletion from the contents of a file containing Original
Code or previous Modifications.

B. Any new file that contains any part of the Original Code or previous
Modifications.

2.1 (b) under Patents Claims infringed by the making, using or selling of Original
Code, to make, have made, use, practice, sell, and offer for sale, and/or otherwise
dispose of the Original Code (or portions thereof).

International Free and Open Source Software Law Review Vol. 1, Issue 2

94 Packaging Open Source

2.2 (b) under Patent Claims infringed by the making, using, or selling of
Modifications made by that Contributor either alone and/or in combination with its
Contributor Version (or portions of such combination), to make, use, sell, offer for
sale, have made, and/or otherwise dispose of: 1) Modifications made by that
Contributor (or portions thereof); and 2) the combination of Modifications made by
that Contributor with its Contributor Version (or portions of such combination).

Section 3.8 of the MPL permits executable versions of the work to be distributed under other
license terms, so long as the source code associated with the MPL-licensed portion of those
executables is made available under the MPL. This is a potential trap for the unwary in that an
executable version of the MPL-licensed source does not necessarily carry with it the patent claims
licensed with the source code, and the licensor of the executable is not obligated to provide a
patent license covering the executable.

Applying License Terms to Software Distributions

Having examined the way a variety of open source licenses treat the issues of derivative works,
collective works, compilations and patents, we now turn to the mechanisms that may be utilized to
effect these distributions. In this context we will focus on two principal means of packaging
software: media packaging and electronic packaging. Given that both forms of packaging
technically exist only in electronic form, a couple of definitions are helpful. Media packaging is
defined as providing content on the same physical media or by means of the same media channel.
Electronic packaging is defined as the organization of content into distinct electronic packages.

As a first premise, I assert that the proper measure of the relationship of one or more software
applications is not the packaging but the actual interrelationship of the packages. In other words,
regardless of mode of delivery, the issue is whether the works are derivative, collective, or merely
aggregated (compilations) when they are resident on the computer that will run them.

Consistent with that first premise, let's examine various forms of physical packaging. At least
three forms of such media packaging come to mind: fixed media, movable media, and electronic
transmission, such as FTP. No one would logically argue that the mere fact two software
applications reside on the same fixed media, such as a computer hard drive, creates any form of
special relationship between those applications under copyright law. If that premise is true, which
I believe it to be, then the fact the media is movable, such as a flash drive, or the content is
delivered via electronic transmission, such as via FTP, would fall into that same category. So the
mere presence of two software applications in the same media packaging should, in and of itself,
never be a concern. This second premise is true under all of the licenses discussed above.

The second form of packaging, electronic packaging, may, at first blush appear to differ.
Electronic packaging of software can occur in any of the following examples: an electronic
package management system, such as RPM; a JAVA class library, or a software appliance.
Because of the distinct differences of each of these electronic packages, it is worth examining them
individually.

A package management system does not itself define the interrelationship of the software
applications that may be included in any one package, other than to contain information about the
included software. An example of a popular open source package manager is RPM. RPM consists
of a software package file format and a free software tool which installs, updates, uninstalls,
verifies and queries software packaged in this format. Each RPM package contains a package
label holding the following information: the name of the software; the version of the software; the

Vol. 1, Issue 2 International Free and Open Source Software Law Review

Packaging Open Source 95

package release; and the architecture on which the package is intended to run, e.g., X86. As a
consequence, an RPM package does not, by itself, indicate a relationship among the code
contained therein and any other code. In this manner, an RPM carries many of the same
characteristics as a media package and not unique characteristics that define the interrelationship
of the packaged software.

This same approach is true for a JAVA class library as packaged in a JAR file. Such files are mere
aggregation tools; they again do not define the interrelationship of the individual programs or
functions that may be included therein. In fact, there is no particular reason that everything in a
single JAR file be licensed under the same license. It is entirely possible for a JAR to contain code
licensed under the GPL, the LGPL, or any of a number of different open source licenses. The
mere fact that these program or functions have been aggregated into a single JAR to make them
readily available in a JAVA application context does not impute a relationship among the varying
contents of a JAR. Such a relationship may or may not exist, and it is only when such an
interrelationship exists that one need to go to the question of the nature of that relationship, i.e.,
derivative work or collective work. From this viewpoint, JAR files are mere compilations.

A software appliance is a software application packaged with just enough operating system
components (abbreviated as JeOS) to allow it to run on hardware or a virtual machine. A JeOs is a
customized operating system designed to fit the needs of a particular software application.
However, the mere fact that the operating system has been customized to minimize its size and to
work with a specific software application does not change the characteristic of the operating
system as an independent work. This is especially true with respect to Linux, and it is worthwhile
to digress for a second in looking at the standard Linux construct.

Linux, or perhaps more appropriately, GNU/Linux, consists of a kernel and various utilities and
applications built to run on that kernel. The Linux kernel itself is of a modular construct, with
groups of files organized into these modules. The internal Linux kernel modules pass information
back and forth among themselves using internal symbols. In GNU/Linux the kernel is licensed
under GPLv2. The utilities and applications, which exist in what is commonly referred to as “user
space,” are licensed under a variety of open source licenses, including most of the licenses
mentioned above.

The Linux kernel provides a number of defined application interfaces that the user applications are
permitted to use, and so long as a user space application does not seek to export an internal
symbol, i.e., one of the symbols passed among the internal Linux modules, it is construed to be an
independent work and neither a derivative work of the Linux kernel or a collective work as
combined with the Linux kernel. Hence, a user space application may be under almost any
license, including a proprietary license, as long as it behaves in the specified manner. Both non-
commercial and commercial Linux distributions combine a Linux kernel with a wide variety of
user space applications to provide a robust, general purpose operating system that is reasonably
easy to install, manage and update. However, the mere fact that the kernel and user space
applications are packaged in the same media does not change their characteristics as independent
works.

Applying this construct of a typical Linux operating system to a software appliance that utilizes a
Linux kernel-based JeOS, it is consistent to view the software application married with the JeOS
and the JeOS as independent works in the same manner as the Linux kernel and user space
applications. The mere fact that they have been placed on the same media or in the same
electronic package does not change that relationship. Of course, this assumes that the application
has been developed independently from the JeOS, and the more development distance that can be

International Free and Open Source Software Law Review Vol. 1, Issue 2

96 Packaging Open Source

placed between the two, the stronger the argument for independent works.

If a software application developer decides to build its own JeOS utilizing Linux and elects to
export internal kernel symbols for use by the application, the software application and the JeOS
may be construed as either a derivative work or a collective work, and the GPLv2, the license
applicable to the Linux kernel, would be the governing license.

Lessons Learned and Lessons Applied

From the foregoing analysis we see that mere packaging of code rarely impacts the licenses
applicable to the various components of the code. Rather, one needs to look at the
interrelationship between software applications, or software applications and the operating system,
to determine whether the two are independent works merely compiled into the same package or
whether they could be construed as either derivative works or a collective work. Consequently,
software application developers looking to utilize one of these packaging techniques can adopt
practices that decrease the likelihood of a finding of a derivative or collective work and increase
the likelihood of the combination being construed as a mere compilation or aggregation, regardless
of packaging. Specifically, software application developers should consider the following
practices:

• Maintain distinct development trees for the software application and any operating system
on which it is to run, including a JeOS.

• If possible, utilize an operating system, including JeOS, that has been developed by an
independent third party. This increases the likelihood that the two works will be properly
construed as independent works.

• Do not export or seek to export Linux kernel internal symbols for use by your application.
If such an export is necessary, make sure the driver or interface effecting that export is
available under the GPLv2.

• Ensure that your software application in the form distributed is equally capable of running
on other forms of operating systems. For example, if the application is being distributed as
a part of a software appliance utilizing a JeOS, it is helpful if that same application code is
capable of running on any standard version of the Linux operating system. This strengthens
the argument of independence.

Conclusion

Open source licenses differ in their treatment of derivative and collective works, although almost
all take the same benign approach to compilations or mere aggregations. It is not the manner in
which an application is packaged with other applications or an operating system kernel that
determines whether one of the two works is a derivative of the other or whether the combination is
a collective work, it is the actual manner in which the two interoperate and are dependent on each
other. Following a few simple practices will increase the likelihood that your software application
will always be considered an independent work regardless of the packaging mechanism that places
it in proximity to an open source operating system like Linux.

Vol. 1, Issue 2 International Free and Open Source Software Law Review

Packaging Open Source 97

About the author

Mark Webbink is a Visiting Professor of Law and Executive Director of the Center for Patent
Innovations at New York Law School. Webbink is also a Senior Lecturing Fellow at Duke Law
School and has served as an Adjunct Professor at NCCU Law School. From 2000 to 2007
Webbink served in various capacities with Red Hat, Inc., including General Counsel, Deputy
General Counsel for Intellectual Property, Senior Vice President and Secretary. Webbink presently
serves on the board of directors of the Software Freedom Law Center. Webbink has written and
spoken extensively on the subjects of open source software, software patents, and patent reform.
Webbink received his B.A. Degree from Purdue University in 1972, his Masters in Public
Administration from the University of North Carolina – Chapel Hill in 1974, and his J.D., magna
cum laude, from North Carolina Central University School of Law in 1994. Webbink maintains a
website on open source and intellectual property law at www.walkingwithelephants.com.

International Free and Open Source Software Law Review Vol. 1, Issue 2

98 Packaging Open Source

Vol. 1, Issue 2 International Free and Open Source Software Law Review

Licence and Attribution

This paper was published in the International Free and Open Source Software Law
Review, Volume 1, Issue 2 (December 2009). It originally appeared online at

http://www.ifosslr.org.

This article should be cited as follows:

Webbink, Mark (2010) 'Packaging Open Source', IFOSS L. Rev., 1(2), pp 83 – 98
DOI: http://dx.doi.org/10.5033/ifosslr.v1i2.26

Copyright © 2010 Mark Webbink.

This article is licensed under a Creative Commons unported 3.0 licence, no derivative
works, attribution, CC-BY-ND.

As a special exception, the author expressly permits faithful translations of the entire
document into any language, provided that the resulting translation (which may

include an attribution to the translator) is shared alike. This paragraph is part of the
paper, and must be included when copying or translating the paper.

http://dx.doi.org/10.5033/ifosslr.v1i2.26
http://www.ifosslr.org/

