
Open Source Policies and Processes For In-Bound Software 143

Open Source Policies and Processes For In-
Bound Software

Karen F. Copenhavera

(a) Choate, Hall & Stewart LLP

DOI: 10.5033/ifosslr.v1i2.27

Abstract
Virtually all companies use some amount of software that has been
made available to the company under an open source license. The re-
use of these valuable software components is inevitable and should not
be discouraged. In addition to reducing the time and cost of
development, re-use of components that have withstood the tests of
time and the many eyeballs of critical peer review provides assurance
of quality and reliability. As companies begin to recognize the
enormous value of this software, they come to the realization that they
must implement policies and systematic processes that assure
compliance with the terms of open source licenses. This includes both
managing the use of open source software within the company and
external obligations arising under relationships with open source
communities.1 This article focuses on policies relating to in-bound
code.

Keywords
Law; Free and Open Source Software; Governance; Compliance

Info
This item is part of the Platform section of IFOSS L. Rev. For more
information, please consult the relevant section policies statement.

The most successful compliance programs are not replicated from a form or copied from another
company. They are organically developed within an organization to fit within that company’s
existing internal control mechanisms. The exercise of developing the policy and processes is an
important part of the organization’s preparation for adoption and deployment. As a threshold
matter, companies must understand the critical distinction between policy and process. The term
“policy” refers to a set of company values that should not change over time. Such values are
aspirational in nature and need to be supported by processes that implement the core values.
Processes do, and should, change as frequently as necessary to reflect the development and growth
of the organization’s business.

Participation in the development of the policy and process assures personal and organizational
buy-in and results in an efficient process that does not die of its own weight. It makes it possible
to optimize the process before it is rolled out, rather than relying on iterative fixes following serial
failures that may result in improvements but at the same time undermine confidence and

1 Such relationships typically include reciprocal contributions of software under an open source license, employee
participation in open source projects, and commitments to open source communities.

International Free and Open Source Software Law Review Vol. 1, Issue 2

http://dx.doi.org/10.5033/ifosslr.v1i2.27
http://www.ifosslr.org/ifosslr/about/editorialPolicies#sectionPolicies

144 Open Source Policies and Processes For In-Bound Software

commitment.

Open Source Policies

I divide compliance programs into two parts – a policy statement and a written business process to
manage the company’s compliance with the policy. This section discusses the design of company
policies; their implementation through company processes is discussed in the following section.
Think of your “policy” as the part of your company’s written vision and value statement that will
absolutely not change with time. Separating the changing from the unchanging gives more power
to the permanent commitment and avoids the appearance that compliance is something akin to
situational ethics. Here is an example of a policy statement for a software vendor that could be
issued and remain unchanged over a very long period:

XYZ respects the intellectual property of others and expects others to respect its
intellectual property. All company personnel must operate within established
procurement processes for the acquisition of intellectual property assets, including
software [and trademarks], for use in XYZ’s products or internal operations.

XYZ’s proprietary software and intellectual property are key assets that contribute
unique value to the company. The impact of the introduction of any code licensed
from external sources into XYZ’s propriety software must be fully considered before
its incorporation into the development process and, if incorporated, compliance with
the terms of the applicable license must be achieved. It is required that XYZ maintain
full accounting for all licensed materials that are included in products commercially
distributed and sold by the company.

This policy applies to all licensed materials, regardless of the method of procurement.
Software that is available for download requires the same level of review and
consideration as software acquired from a commercial company pursuant to a formal
contracting process.

Any questions or concerns regarding compliance should immediately be addressed to
_____ [Title such as the VP of Engineering].

The rest – anything that is fluid – is all process. Why the distinction?

• Because companies should not violate their policies. Company policies are commonly
intended to be immutable concepts that provide fundamental guidance in the form of
“thou shalt nots.”

• A company undermines the effect of all of its policies if any policy is not consistently
applied.

• If you are in litigation, you do not want the other side to demonstrate that your actions
were in violation of your own policy. You don’t want to be “hoisted with your own
petard.”

• An overly dogmatic policy may also be poorly received by developers.
• Because a change in a policy implies that the policy was wrong to begin with and because

most companies’ use of open source will change over time, the policy should anticipate a
changing set of internal and external norms and requirements.

• A “one-off” decision should not be a violation of company policy; it should be an
anomaly that is specifically supported by the process as implemented.

Vol. 1, Issue 2 International Free and Open Source Software Law Review

Open Source Policies and Processes For In-Bound Software 145

A particularly illustrative example of a statement that should not be included in any policy is
something like: “It is company policy not to use any code made available under the GPL.” Here,
the point is not whether the GPL is good or bad. Indeed, the company may, for whatever reason,
prefer to choose other alternatives when all else is equal, but that does not amount to a flat-out
prohibition against using GPL code. And even putting aside the thorny issue of using GPL code
directly in the company’s proprietary code base, there are too many invaluable tools and programs
made available under the GPL that can be used to facilitate internal development appropriately and
in full compliance with the applicable license obligations to impose a blanket prohibition without
an exception process. Almost all companies that develop software use tools, such as GCC, the
GNU Compiler Collection, that are made available under the GPL, and most companies use GPL
licensed code such as the Linux operating system in their internal operations. Issuing a policy that
prohibits all use of code licensed under the GPL is highly likely to be violated on the date that it is
issued. Thus an issue has been created because the company has a policy violation even if the
company is in full compliance with the license. Rather, the important point is that policies adopted
without thoughtful consideration of the issue will fail almost immediately.

Essential Elements of Successful Open Source Processes

1. Assignment of Responsibility for Decision Making

Probably the most important indicator of whether a process carrying out a policy will be
successfully implemented in a company is whether there is a clear statement of personal
responsibility for every part of the process. While you are reading below the details of structures
and decisions, I am sure you will be thinking: “Why would you spend so much time dividing the
analysis into all of these different parts?” Your own analysis may differ, but, in my experience, the
answer to why a process is not working is somewhere in these structural issues – even though the
structural issues are often only reflected in personal conflicts.

Here is an example of a problem that, in reality, is caused by a lack of structural clarity but often
manifests itself in the context of a personality clash. Let us say an engineer named John is asked
to gather information about an open source project and its potential use and to analyze its pros and
cons. John works with development management, and a careful decision is made in favor of using
the project. But that decision gets rehashed and remade all the way up the chain by people who do
not know or understand the technical analysis that went into the original decision or who
incorrectly feel it is their responsibility to make an in-depth analysis. John feels angry and
dismissed, and complains to everyone who will listen that he will never take the process seriously
again.

If we assume that, in the end, it was the right decision not to use the project, how would you fix
the problem? I suggest that the best solution is to make it clear that everyone in the chain is not
actually rehashing the same decision, even if that appears to be the case. Rather, what is
happening is that everyone is making different decisions based on their own knowledge and
expertise. When the responsibility for making different parts of the decision is not clearly divided
and assigned, it is likely that everyone in the chain will re-visit all of the different parts of the
analysis and will be unnecessarily risk-adverse. Frequently, everyone in the chain is authorized to
say “no” and no one is comfortable saying “yes.” Therefore, identifying everyone’s specific role
in the process can be essential to empowering everyone involved in that process to make an
affirmative decision. Furthermore, doing so makes it clear that everyone’s contribution to the
process is respected. For example, the lawyer should not be re-making technical decisions about
component selection if the development manager has been clearly assigned responsibility for that
task. Likewise, the development manager should not be making a decision based on his

International Free and Open Source Software Law Review Vol. 1, Issue 2

146 Open Source Policies and Processes For In-Bound Software

assessment of the likelihood of a patent claim if that role is reserved to individuals tasked with
corporate-wide risk management relating to patent matters.

There are many potentially successful structures, but decisions are commonly made either through
a vertical or a horizontal process. A vertical process starts with a decision and recommendation
made at the operational department level and specifies an orderly sequence through a series of
chairs to confirm or overturn that decision. Each step in the sequence involves a single individual;
there are no groups or boards that meet to consider the question. The last person in the sequence
verifies that all the others have signed off and gives the final approval. The original request by the
department is either confirmed or denied. No one in the chain exercises their own judgment
regarding an alternative path. If the answer is no, the department goes back to work to develop
another proposal and request. For example, the following is a common vertical process in a small
organization:

• A non-management developer initiates a request to use an open source component. He or
she has the responsibility to gather information about the open source project, the
applicable license, etc. He or she provides that information to the development manager.

• The development manager assesses the usefulness and quality of the project, the time
savings that would be achieved using that code, etc., and decides whether the choice is
appropriate from a development perspective.

• The development manager consults with in-house or outside legal counsel who reviews
the license, the proposed use and the business objectives, and determines that the license
is appropriate for the use. The legal counsel’s review is limited to matters within his or
her expertise as a lawyer and confirmation that the company’s internal processes have
been followed.

• The development manager gets business unit management approval – probably without a
meeting or presentation - based on confirmation that company policies and processes
have been followed.

A vertical process is possible when issues are well-defined and when the impact of a decision is
limited to a single business unit. The decision making and the process is largely in the control of
the department making the request.

In contrast, a horizontal process provides for decisions to be made based on simultaneous input
from multiple stakeholders. In a horizontal process the operational department requesting
permission is not the decision maker. The impact of the decision goes beyond that department.
Others are empowered to impose an alternative solution that is preferable for the organization.
The answer to the original request may not be yes or no, it may be an entirely different plan of
action. For example:

• The development manager gathers information and makes a business case to an Open
Source Review Board on the pros and cons of using an open source component.

• All of the stakeholders across departments in the decision are represented on the Open
Source Review Board, and the decision is made through the back-and-forth of committee
deliberations. The committee reaches a consensus around the committee’s recommended
plan of action – which may be entirely different from the plan proposed by the
department.

While both structures can work, processes that are not clearly defined are neither or both and the
result is increased frustration at the requesting department level. The individuals in the requesting
department have made a decision and know the facts regarding the request better than anyone else

Vol. 1, Issue 2 International Free and Open Source Software Law Review

Open Source Policies and Processes For In-Bound Software 147

in the organization. They want that decision confirmed unless there is a specific identified
corporate policy that requires denial. They will assume the process is vertical unless expressly
told otherwise. But an undefined process is likely to be conducted as though each rung in a
vertical process is akin to an informal committee meeting resulting in a full review by participants
acting outside of their expertise. A clearly defined horizontal process avoids this frustration by
putting the department on notice that they are advocates for their request but not the decision
makers. It also establishes a formal committee process with clearly defined areas of responsibility
for everyone included in the meeting.

2. Who Initiates a Request and Who Gathers What Information?

Designers of effective processes need to clearly delineate the discrete tasks of gathering
information and acting on that information. As discussed above, frequently the individuals tasked
with collecting and presenting information believe—incorrectly—that they are responsible for
making decisions based on their findings. If that is indeed the intended process, the process
description should state so explicitly. Otherwise, those whose task is to gather and present
information will provide only their conclusion and the information that supports that conclusion.

3. Who Makes What Decisions?

Generally, there are at least four components of any decision to use licensed code in your product.

• First, is it appropriate to have a dependency on code that is not owned by the company for
the purposes of this product? The first decision is whether the company wants, or needs,
to control the functionality to be provided by the code. Relevant considerations in that
decision include: security, creation of a dependency on a format or standard, possibility of
acquisition of the code owner by a competitor, difficulty or expense of removing the code
after development on top of it has begun; and impact on product roadmaps or design
decisions.

The tolerance for using licensed code has grown considerably over the years. In fact, an
assumption has evolved that re-using assets is a wise business decision—and that assumption will
only become stronger over time. But whether using open source code is a thoughtful decision or
just a practical assumption, the first decision that the company is making is that using code that is
not completely controlled by the company is appropriate in this instance.

This is the first step in the open source risk analysis. It is based on the company’s lack of control
or the absence of any confidentiality. It is not based on events that affect the project in general or
any other users of a project. It is a determination of whether developing a dependency on this code
creates a vulnerability for this particular company and product plan.

• Second, assuming that using code you do not own is appropriate, is this the right code ?
Does it provide the right functionality for today and is it extendable to provide the
required functionality for tomorrow? Is it good code? Is it documented? Is support
available, and, if so, from whom? Is there a compelling commercial reason for the
support to be maintained? For example, the risk of using an open source project that is
hosted by a commercial software company may be different from the risk of using code
developed by an unincorporated project that is supported by many companies. The sole
supporter may lose enthusiasm and there may be no other enthusiasts to pick up where the
company left off. And if it is likely that support will be unavailable in the future, does it
make business sense for the company to maintain the code in-house?

International Free and Open Source Software Law Review Vol. 1, Issue 2

148 Open Source Policies and Processes For In-Bound Software

• Third, are the terms of the license for the code aligned with the company’s business
objectives? Can the company achieve its business objectives while complying with the
license obligations? This is the lawyer’s domain, where counsel can help the organization
understand and prepare for the legal ramifications of business decisions. Here, most in-
house lawyers have to conduct two lines of analysis: a legal interpretation of the license,
and an analysis based on community consensus, or lack thereof, on the applicable license
obligations.

Lawyers also have to determine (I) whether there is a process in place that will enable the
company to stay in compliance in the future; (ii) the likelihood of inadvertent failure to comply
with the license terms; and (iii) the impact of a compliance failure on achieving the company’s
objectives. If compliance is dependent on a specific set of facts, will a flag be raised if those facts
change? For example, if compliance is dependent upon use of the code without modification, will
a review be triggered if the code is modified? If achievement of business objectives, while
remaining in compliance, is dependent upon limiting usage to internal application only, will a
review be triggered if the code is distributed? This is the second step in the open source risk
analysis, and involves internal risk that can be managed, rather than risk that arises from matters
outside of the company’s control. Companies with robust processes for managing compliance
have more options for dealing with this exposure than companies that cannot be sure that
implemented compliance policies will be maintained.

• Fourth, is the use of this code consistent with the company’s tolerance for risk, its risk
management practices, or both? This combined legal and business analysis is the third
step in the risk analysis, based on matters outside of the company’s control. This
assessment is very similar for all code regardless of its origins. While the risk tolerance
for open source in general has grown as open source has become more mainstream, risk
analysis should always be project-specific. For example, the risk of using a project that is
also used by many other industry leaders is very different from the risk of using a project
that was long ago abandoned. Obviously, an established project is much more likely to
have widespread support and resources if continued availability of the code and support is
jeopardized.

This type of risk is not based on the applicable license, which means that companies that make
decisions based entirely on the license will miss this part of the decision process. Who, if anyone,
will assist in the defense of this code in the event of a patent or copyright infringement claim?
What is the governance structure for the project? Has anyone reviewed the code for internal
license conflicts? For example, since open source code does not come with any indemnification
for intellectual property claims, is there some additional review of the code that should occur to
make sure that the same diligence is applied to the open source code as is applied to internally
developed or commercially licensed code provided without a viable indemnity?

4. Assignment of Responsibility for Information Gathering

This step is perhaps the most important element of identifying places where a process stalls or
breaks down completely. It is very easy to create an appearance of progress by bouncing a request
back and forth, but it is much harder to gather all the information necessary for the decision
making described above. For instance, it is common for an original requester to complain about
delays in making a decision, while the process is on hold awaiting information necessary to
perform the analysis from a person tasked with obtaining the data. This problem is often
compounded by a lack of feedback as to the effectiveness of information gathering—itself a sign
of poor process.

Vol. 1, Issue 2 International Free and Open Source Software Law Review

Open Source Policies and Processes For In-Bound Software 149

Of course, the amount of information required for a decision varies significantly from organization
to organization. Some companies get no more than the basic facts: project name; license; and
some description about support options. Other companies want something approaching the
Business Readiness Review (“BRR”) process originally proposed and developed by Carnegie
Mellon West, O'Reilly CodeZoo, SpikeSource, and the Intel Corporation.2 The BRR looks at the
following characteristics in assessing a project’s maturity:

• Functionality: does the software meet user requirements?
• Usability: is the software intuitive, easy to install, easy to configure, and easy to

maintain?
• Quality: is the software well designed, implemented, and tested?
• Security: how secure is the software?
• Performance: how does the software perform against standard benchmarks?
• Scalability: can the software cope with high-volume use?
• Architecture: is the software modular, portable, flexible, extensible, and open? Can it be

integrated with other components?
• Support: how many sources of support are available?
• Documentation: is there good quality documentation?
• Adoption: has the software been adopted by the community, the market, and the industry?
• Community: is the community for the software active and lively?
• Professionalism: what level of professionalism does the development process and project

organization exhibit?

Some companies do a full review of the source code before using it. Even though the project
indicates that it is made available under a certain license, the file headers within the project may
indicate other licenses that may or may not be compatible with the declared license for the project.
Code scans can find other code that may have been copied from other projects that are made
available under a license that is not indicated. Furthermore, some companies have very different
review processes for code to be shipped in a product and code to be only used internally.

5. Assigning Responsibility for Follow-Through

Follow-through refers to an explicit mandate for ensuring ongoing compliance with the review
process once initial approval has been granted. This is the most difficult step to implement in the
entire process, as illustrated by the example of a company that had developed a very specific plan
to ensure compliance with certain license obligations. The plan had been documented, and
development had commenced. However, the details of the plan had not been communicated to the
right people on the product management team and was ignored.

Best practices for implementing follow-through programs that ensure ongoing compliance with the
process include tightly coupling review processes with product development cycles, usually in the
form of automatic triggers when potential issues arise. It is important to avoid the all-too-common
pitfall of follow-through plans: merely keeping a file in the lawyer’s office with information about
a particular component decision without ensuring that this information is actually reviewed as the
code travels throughout the development process.
6. Education

To be successful, a process should place a heavy emphasis on ongoing education.

• Education at the time the policy is rolled out . The tone of the communication is

2 See Home – Open BRR, http://www.openbrr.org/ (last visited Jan. 22, 2010).

International Free and Open Source Software Law Review Vol. 1, Issue 2

http://www.openbrr.org/

150 Open Source Policies and Processes For In-Bound Software

important. If it sounds as though the lawyers are “crying wolf,” the process will do more
harm than good. Generally, the best communication will portray the controls being
imposed as positive steps enabling more efficient use of open source, where consistent
with the company’s goals. It is equally important to select the right people to deliver the
communication. If a lawyer is sent to a department meeting to talk about the risks
associated with using open source code, it is unlikely that anyone will long remember
what was said. An enthusiastic and supportive department manager explaining the policy
and process will find a much more receptive audience. And a dose of reality may help:
the best education session I have attended was conducted by a manager who was new to
the company and had just survived a remediation effort at his prior employer, which he
described as the most tedious and frustrating experience of his working life. This
personal account was a helpful illustration of what could happen if the introduction of
code into the product was not actively managed.

• Education of all new employees . Some employees, especially those fresh from school,
can sometimes develop bad habits that are very hard to break. For example, one company
hired a brilliant programmer only to find out six months later that he had contributed
massive amounts of code to the company’s code base—amounts that were not humanly
possible to write in his short tenure at the company. The employee had dutifully gone
through all of the new employee training and had signed a statement that he understood
the policies. Then how could he have thought that cutting and pasting massive amounts
of code from Internet sites was appropriate? Simply, it was the way he had learned to
code. The idea that he should start every project with a fresh sheet of paper seemed so
preposterous to him that he had assumed that the company did not mean it. What is more,
new employees may bring with them incorrect assumptions about open source code from
their previous employers, or even from what they read on the Internet.

• Ongoing training regarding process improvements . Hearing and responding to criticism
and implementing suggestions is key to a successful program. It is important to let the
employees know that someone is listening and responsible for the success of the process.

7. Open Source Review Boards

To capture the benefits of horizontal processes described above, many organizations establish a
cross-discipline group of individuals, often called the Open Source Review Board, who meet and
decide as a group on all open source usage. Usually, this group assumes responsibility for all
aspects of the decision because all of the stakeholders in the decision-making process are
represented on the board.

Many companies rotate executives, who are in the best position to share knowledge across the
entire organization, on the open source review board to spread their support of and confidence in
the process across the company. At the same time, many organizations prefer to keep one or more
individuals on the Open Source Review Board for several years to ensure continuity of learning. It
is often these board members who are best able to change established precedent, because they
remember the basis for the original decision and know when it is no longer applicable or
appropriate to the facts of the situation.

Depending on organizational preferences, the role of an Open Source Review Board can be limited
to confirmation of decisions already vetted through a vertical process. Alternatively, the company
can adopt a largely horizontal process, with the board acting as a court of first impression. Either
choice can be efficient, depending on the commitment of the members of the board to engage in
the process and to make attendance at the meetings a high priority. If the board members do not
make the board a high priority, then the role of the review board should be limited to confirming
the results of a prior vertical process.

Vol. 1, Issue 2 International Free and Open Source Software Law Review

Open Source Policies and Processes For In-Bound Software 151

In my experience, Open Source Review Boards work well in larger organizations but not as well in
small companies. In smaller companies the people on the board wear too many hats and expect
others to attend the meeting when they are stretched thin. The in-house counsel frequently relies
on the committee meeting for verification that the issues have been fully vetted and the counsel’s
work is delayed when the board meeting has to be rescheduled because the required decision
makers are not in attendance. And precisely because a process already exists – to convene the
committee – there is no alternative process to support thoughtful analysis within the management
chain and outside of the review board.

8. Open Source Compliance Officers

Because the establishment of an Open Source Software Compliance Officer (“OSSCO”) has been
a component of many well-publicized settlements of litigation based on allegations of non-
compliance with open source licenses,3 many companies are proactively considering the
establishment of a position with a similar title.

Beyond the title, there is a lot of variation in what the job description or mission statement for an
OSSCO looks like. In a large organization, the job is probably more akin to an open source
ombudsman who maintains some degree of a separation between the day-to-day business
processes for open source approval, and is available to discuss concerns from individual
employees concerned about the company’s fulfillment of commitments to the communities from
which the company benefits. A single compliance officer could not personally be involved in
every decision, so the focus is at the process level and on specific issues that arise out of the
ordinary course of business.

In smaller organizations, the description of the OSSCO’s duties is closer to that of a one-person
Open Source Review Board. The officer is involved in every decision that the company makes
regarding development, use or distribution of open source software. To the extent the officer
serves as a champion of open source software within the company, his job description should
ensure that his recommendations are attuned to legitimate business needs of the company.
Here is a proposed job description that was provided by Karen Sandler of the Software Freedom
Law Center:

The OSSCO should be available and responsive regarding issues relating to free
software license compliance. The OSSCO should undertake best efforts to resolve all
such issues as quickly as possible. In cases where violations have been identified, the
OSSCO should on a periodic basis provide to the copyright holders a written report of
the scope and manner in which the company is redistributing the software and
complying with the applicable licenses. The OSSCO should also be responsible for
reviewing all of the company's products before they are offered to the public to ensure
that they are in compliance with all applicable free software licenses.4

9. Timing and Tools

Most processes that are perceived by developers as successful have some element of guaranteed
turn-around time. This does not mean that there is a promise that all issues will be resolved in a
given time period, as that only guarantees a negative answer if the assessment has not been

3 See, e.g., BusyBox Developers Agree To End GPL Lawsuit Against Verizon, Mar. 17, 2008,
http://www.softwarefreedom.org/news/2008/mar/17/busybox-verizon/ (discussing the terms of the settlement between
Verizon Communications Inc. and the Software Freedom Law Center acting on behalf of two BusyBox developers).

4 Private correspondence between Karen Sandler and Karen F. Copenhaver. For another excellent discussion of
OSSCO, see also Posting of Stormy Peters to https://fossbazaar.org/?q=content/job-description-open-source-
compliance-officer (Mar. 12, 2008) (offering thoughts on an OSSCO job description).

International Free and Open Source Software Law Review Vol. 1, Issue 2

https://fossbazaar.org/?q=content/job-description-open-source-compliance-officer
https://fossbazaar.org/?q=content/job-description-open-source-compliance-officer
http://www.softwarefreedom.org/news/2008/mar/17/busybox-verizon/

152 Open Source Policies and Processes For In-Bound Software

completed by the deadline. But a promise that there will be a response within a specified period
provides confidence that open source issues will not hold up development. With a dedicated group
sitting on an Open Source Review Board, institutional learning grows, and issues quickly begin to
sort themselves into those that are relatively easy to answer and those that will take more time and
work to bring to a conclusion. Timing commitments also tend to encourage automation of the
process and the creation of forms and guidance documents that make for more efficient operation.
Below are several thoughts on recommended best practices.

• Request forms and templates that make sure that all required information is provided with
the initial submission avoid an inefficient back-and-forth information gathering process.

• Guidance documents that provide insight into a typical Open Source Review Board’s
analysis filter out requests that are unlikely to be approved.

• Email approval processes that make sure that the requests are circulated to the right
people save time and frustration. Consider using dedicated mail accounts and distribution
lists.

• Process management tools that provide status reports upon request and automatically
remind decision-makers of approaching deadlines make the process more efficient.

To belabor an obvious point, a process for managing the use of open source software will benefit
greatly from automation. Automated tools can:

• provide evidence of unintended open source usage (which often is the very first step in
convincing management of the need for a formal process);

• deliver timely reminders or decision triggers by identifying open source components as
they are added to a source tree;

• gather and organize the information necessary for decision making;
• provide a record of analysis and decision making;
• maintain a bill of materials for any code base that travels with the code or is available as

part of the product checkpoint process; and
• assist in identifying all possible sources and available licenses of discovered open source

code.

What Is the Right Policy and Process for a Company?

Of course, the right policy and process for a particular company will depend on many factors: the
reason for implementing the process (e.g., what is the immediate issue?), the level of
sophistication of the company’s employees about open source software and communities, and the
existence of a compliance issue that has already involved third parties in the process.

The main reason for implementing an open source review process is compliance. But the real
answer is more nuanced, and requires understanding of events that triggered the introduction of a
policy. Some examples follow.

• Customer demand . The number one reason for implementing a compliance program is a
request from customers. For example, a software company has very little experience with
open source but responds to customer demands for a version of their product that works
on open source platforms, or to demands for a list of all open source code used in the
product. The company intends to hire developers who are familiar with those platforms,
and wants to educate both their existing and new developers on a consistent approach to
controlling the introduction of open source code into their development environment.

Vol. 1, Issue 2 International Free and Open Source Software Law Review

Open Source Policies and Processes For In-Bound Software 153

• Reverse procurement policy . A company that had a prohibition on using open source
software has decided to change that policy. To address the issue of gaining control of the
process in its early stages, the company’s policy addressed the fact that the company’s
employees had little or no experience with open source.

• Push the work off the lawyer’s plate . The company’s lawyer is getting requests for
approval of licenses, and the requests arrive without any of the information required to
make a decision. Frustration on both sides necessitates the creation of a process for using
the attorney’s time wisely and obtaining a commitment from the attorney for a target turn-
around-time. Because this situation demands difficult compromises from both sides, it is
important to employ well-respected internal champions who can move the process
forward.

• The painful moment . A company suffers a rude awakening when it discovers a
compliance failure, perhaps in the form of notices from third parties or even undesirable
media attention.5 The resulting remediation efforts are disruptive, and the company
executives want to make sure that they are never in this position again. While the nature
of the policies that arise in these circumstances is usually relatively ponderous,
nonetheless the policies tend to work well as designed because they have executive
backing at the highest level and are implemented quickly.

• Anticipating a merger or acquisition . A company anticipates an acquisition as its exit
strategy and it wants to be prepared for due diligence inquiries from the acquiror. Here,
the anticipated acquiror’s counsel serves as the “bad guy” to whom all internal frustration
can be transferred. Under these circumstances, developing an open source policy and
process can be complemented by reviewing the company’s code base for existing open
source usage.

• Closing condition for round of financing . After a round of due diligence in relation to a
financing, developers are instructed by a company’s board to “get the code clean and to
keep it clean.” This incentive coming from the highest levels is likely to assure success
of the process regardless of the nature of the policy adopted.

• Consistency across groups . A company has good procedures for most of its business
operations but little or no procedures for certain part of its business (e.g., a recently-
acquired small company whose core product contains significant open source code).
While developing a global approach that works for all groups can be difficult, the existing
disparity between divisions creates a feeling that the failure to adopt similar policies in
the non-compliant segment of the business is intentional or willful. Moreover, this failure
in the non-compliant portion destroys the value of the significant investment that has been
made to bring the rest of the company’s operations to compliance.

• Open sourcing own code . A company decides that it wants to contribute a code base to an
open source project and to try to form a community around that code base. This
investment in the release of the code and in the development of the community around it
will be severely undermined if the company fails to comply with its open source
obligations to other communities.

Conclusion

Companies should establish their core values with respect to open source usage, and formalize
their analysis in a nuanced policy that responds to current issues and anticipates future challenges.
Once a policy is in place, it should be operationalized by a well designed and articulated formal
process. Regardless of the motivation for implementing the compliance program, an efficient

5 See, e.g., GPL Violations homepage – The gpl-violations.org project, http://gpl-violations.org/ (last visited Jan. 22,
2010) (listing past and present infringers of the GPL).

International Free and Open Source Software Law Review Vol. 1, Issue 2

http://gpl-violations.org/

154 Open Source Policies and Processes For In-Bound Software

process with clearly identified responsibilities is important to gain the necessary support of all of
the stakeholders within the organization.

About the author

Karen F. Copenhaver is listed in The International Who's Who of Internet & e-Commerce
Lawyers, Chambers USA, Best Lawyers in America and as a Massachusetts Super Lawyer. She
was also named in The Legal 500 for technology transactions. Ms. Copenhaver is only the 5th
lawyer ever to receive Mass High Tech's prestigious “Mass High Tech All-Stars Award,” which
honors the thought leaders and innovators throughout the New England technology sector. She
has been chosen by Intellectual Asset Management magazine as one of the world’s top IP
strategists in their feature “IAM 250 — A Guide to the World’s Leading IP Strategists.” Ms.
Copenhaver is also director of intellectual property strategy for the Linux Foundation.

Vol. 1, Issue 2 International Free and Open Source Software Law Review

Licence and Attribution

This paper was published in the International Free and Open Source Software Law
Review, Volume 1, Issue 2 (December 2009). It originally appeared online at

http://www.ifosslr.org.

This article should be cited as follows:

Copenhaver, Karen F. (2009) 'Open Source Policies and Processes For In-Bound
Software', IFOSS L. Rev., 1(2), pp 143 – 154

DOI: 10.5033/ifosslr.v1i2.27

Copyright © 2009 Karen F. Copenhaver.

This article is licensed under a Creative Commons UK (England and Wales) 2.0
licence, no derivative works, attribution, CC-BY-ND.

As a special exception, the author expressly permits faithful translations of the entire
document into any language, provided that the resulting translation (which may

include an attribution to the translator) is shared alike. This paragraph is part of the
paper, and must be included when copying or translating the paper.

http://dx.doi.org/10.5033/ifosslr.v1i2.27
http://www.ifosslr.org/

